
DHANALAKSHMI COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EE8351 DIGITAL LOGIC
CIRCUITS
UNIT – I

NUMBER SYSTEM AND DIGITAL LOGIC
FAMILIES Part – A

1. Determine (377)10 in octal and Hexa-decimal equivalent.[N/D’14]

8

377 16 37
7 8 47 -

1
16 23 -

9 5 -
7

1 -
7

(377)10=(571)8 (377)10=(179)16

2. Compare the totem – pole output with open collector output. [N/D’14]

S.No. Totem pole Open Collector

1. Output stage consists of pull-up
transistor, diode resistor and pull-
down transistor.

Output stage consists of only pull-
down transistor.

2. External pull-up resistor is not
required

External pull-up resistor is required
for proper operation of gates.

3. Operating speed is high. Operating speed is low.

4. Output of two gates cannot be
tied together.

Output of two gates can be tied
together using wired AND
technique.

3. Convert : [A/M’15]

a) (475.25)8 to its decimal equivalent.
 =4x82+7x81+5x80+2x8-1+5x8-2
 =256+56+5+0.25+0.078125
 =(317.32814)10

b) (549. 𝐵4)16 to its binary equivalent.
 =5x162+4x161+9x160+11x16-1+4x16-2
 =261+64+9+0.6875+0.01562

 =(334.703)10

4. Define propagation delay. [A/M’15]
Propagation delay is the average transition delay time for the signal to

propagate from
input to output then the signals change in value. It is expressed in ns.

5. What is unit distance code? Give an example. [N/D’15]
Unit distance code is a non- weighted code in which next increment or
decrement causes the bit transition only at one place. Ex: Gray code.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

6. Define Fan-out. [N/D’15]
Fan- Out is defined as the maximum number of inputs of several gates that

can be
driven by the output of logic gate maintaining its output levels within the

specified
limits.

7. Construct OR gate and AND gate using NAND gate. [N/D’16]

8. Convert the following Excess-3 numbers into decimal numbers [N/D’16]
a) 1011
b) 1001 0011 0111

a) Binary equivalent of Excess-3 1011 is 1000

Decimal equivalent of 1000 (8)10

b) Binary equivalent of Excess-3 1001 0011 0111 is 0110 0000 0100

Decimal equivalent of 1000 (604)10

9. Reduce 𝑎(𝑏 + 𝑏′𝑐) + 𝑎𝑏′ [A/M’17]

𝑎(𝑏 + 𝑏′𝑐) + 𝑎𝑏′ = 𝑎𝑏 + 𝑎𝑏′𝑐 + 𝑎𝑏′
= 𝑎(𝑏 + 𝑏′) + 𝑎𝑏′𝑐 = 𝑎 + 𝑎𝑏′𝑐

10. Convert 14310 into binary and binary coded decimal equivalent. [A/M’17]

Binary coded decimal equivalent 14310 is 0001 0100 0011

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Scanned by CamScanner

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

EE8351 – DIGITAL LOGIC CIRCUITS
UNIT – IV

ASYNCHRONOUS SEQUENTIAL CIRCUITSAND PROGRAMMABLE LOGIC DEVICES
PART – A

1. What is deadlock condition? [N/D’14]
A condition resulting when one task is waiting to access a resource that another is holding, and
vice versa.

2. Draw the block diagram of PLA. [N/D’14]

3. State the difference between static – 0 and static – 1 hazard.[A/M’15]
Static-1 Hazard: the output is currently 1 and after the inputs change, the output momentarily
changes
to 0 before settling on 1
Static-0 Hazard: the output is currently 0 and after the inputs change, the output momentarily
changes to 1 before settling on 0

4. What is a PROM? [A/M’15] , [N/D’15]
PROM- Programmable Read Only Memory is a device that contains Fixed AND and
Programmable
OR functions. IT contains fuses inact giving all 1`s in the stored bits and blown fuses by
applying high voltage defining 0 states.

5. Compare pulsed mode and fundamental mode asynchronous circuit.[N/D’15]

S.No. Pulsed mode asynchronous circuit Fundamental mode asynchronous circuit

1. Inputs are levels. Inputs are pulses.

2.
Memory elements are either clocked flip –

flops or time delay elements.
Memory elements are clocked flip – flops

3. More difficult to dsign. Easy to design.

6. What are the two types of asynchronous sequential circuits? [M/J’16]
The two types of asynchronous sequential circuits are:

a) Fundamental mode circuits
b) Pulse mode circuits

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

7. State the difference between PROM, PLA and PAL. [M/J’16], [A/M’17]

Types of PLD s AND array OR array

PROM Fixed Programmable

PLA Programmable Programmable

PAL Programmable Fixed

8. What is static hazard and dynamic hazard?[N/D’16]

9. Define races in asynchronous sequential circuits.[N/D’16]
When 2 or more binary state variables change their value in response to a change in an input
variable, race condition occurs in an asynchronous sequential circuit. In case of unequal delays, a
race condition may cause the state variables to change in an unpredictable manner.

10. What is a flow table? Give example. [A/M’17]
A state transition table with its internal state being symbolised with letters.
Examples:

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

PART – B

1. Explain the various types of hazards in sequential circuit design and the methods to eliminate them.

Give suitable examples. (16) [N/D’14]
Hazards in any system are obviously an un-desirable effect caused by either a deficiency in the
system or external. Influences. In digital logic hazards are usually referred to in one of three ways:

a) Static Hazards
b) Dynamic Hazards
c) Function Hazards

These logic hazards are all subsets of the same problem: - When changes in the input variables do
not change the output due to some form of delay caused by logic elements (NOT, AND, OR gates
etc), this results in the logic not performing its function properly.

This is however a temporary problem, and the logic will finally come to the desired function. Despite
the logic arriving at the correct output, it is imeritive that hazards be eliminated as they can have an
effect on other systems. Imagine hazards like this in a piece of hospital equipment.
Static Hazards

Definition:- "When one input variable changes, the output changes momentarily when it shouldn't"

This particular type of hazard is usually due to a NOT gate within the logic. We can see the effects

of the delay in the circuit from the following flash animation.

 The hazard can be dealt with in two ways:

1. Insert another (additional) delay to the circuit. This then eliminates the static hazard.

2. Eliminate the hazard by inserting more logic to counteract the effects (Note this makes

assumptions that the logic will fail)

 The first case is the most used of the two options. This is because it does not make

assumptions about the logic, instead the method adds redundancy to overcome the hazard.

 To solve the hazard we shall use our previous example and apply a theory that 'Huffman'

discovered.

 The insertion of a redundant loop can eliminate a static hazard.

In the next example, it will also be evident that there will not be a situation where a static '0' occurs.

A static '0' hazard is one which briefly goes to '1' when it should remain at '0'. A static '1' hazard is

the reverse of this situation, i.e. the output should remain at '1' yet under some condition it briefly

changes state to '0' (something we shall see in the following example)..

Example of Static Hazards

The Static '1' Hazard.

Let us consider an imperfect circuit that suffers from a delay in the physical logic elements i.e. AND

gates etc.

The simple circuit performs the function:

f = X1.X2 + X1'.X3

and the logic diagram can be shown as follows:

At the starting diagram, it is clear that if no delays were to occur, then the circuit would function
normally. However since this is not a perfect circuit, and an error occurs when the input changes

 from 111 to 011. i.e. When X1 changes state.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

This Karnaugh Map shows the circuit. The two gates are shown by solid rings, and the hazard can
be seen under the dashed ring. The theory proved by Huffman tells us that by adding a redundant
loop 'X2X3' this will elimate the hazard. So the resulting logic is of the form shown in the next figure.

So our original function is now: f =X1.X2 + X1'.X3 + X2.X3

It is observed that even with imperfect logic elements, this example will not show signs of hazards

when X1 changes state. This theory can be applied to any logic system.

Dynamic Hazards

 Definition:- "A dynamic hazard is the possibility of an output changing more than once as a

result of a single input change"

 Dynamic hazards often occur in larger logic circuits where there are different routes to the

output (from the input). If each route has a different delay, then it quickly becomes clear that

there is the potential for changing output values that differ from the required / expected output.

e.g. A logic circuit is meant to change output state from '1' to '0', but instead changes from '1' to

'0' then '1' and finally rests at the correct value '0'. This is a dynamic hazard.

 Dynamic hazards take a more complex method to resolve. The below example shows how a

dynamic hazard can occur but now how to solve it.

Let us take the circuit above, and see the proper logic output with the logic values above

Let artificial delays be introduced in some of the elements. Marked D1, D2 and D3.

 Consider D1 < D2 < D3.
i.e. The delay in D1 is less than the delay in D2, and the delay in D3 is greater than the
delay in D2.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

 Say that input B changes from 0 to 1. Working with one delay at a time the output can be
determined.

 There could be a different output value for every different delay.

 The NOT gate shown changes from 1 to 0. Remembering that D1 is the shortest of the
three delays, the AND gate shown will also change from 1 to 0.

 Because the other delays (D2, D3) are longer than D1, and because the other gates have
no delay (or neglible delay), our output changes from 1 to 0. (The first effect of the hazard).

 The next delay to occur is D2. So the OR gate shown implements the change (0 OR 1 = 1).
Now the AND gate has only seen the change in one of its inputs due to the delay D3 being
longer than the other delays. So momentarily, both inputs are logic 1 which means the AND
gates output goes to logic 1 hence changing the output of the entire circuit (1 OR 0 = 1).

 The next delay to occur is D3. The OR gate reacts slower than D1 to the change in input,
but now the OR gate implements the change (0 OR 0 = 0). There is a knock on effect to the
AND gate (as 0 AND 1 = 0) and then again to the output of the entire circuit. The output
rests at 0.

 This is the final stage as there are no more delays in the circuit and therefore no more
changes of state due to input B changing.
D3(1 OR 0 = 1).

 The circuit finally rests at the correct logical value for an ideal circuit. However the output
has changed values twice before coming to the correct result on the third change. If this was
an ideal circuit then the output should have changed only once.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

2. Describe with reasons the effect of races in asynchronous sequential circuit design. Explain its type
with illustrations. Show the method of race – free state assignments with examples. (16) [N/D’14]

 A race condition or race hazard is the behaviour of an electronic, software, or
other system where the output is dependent on the sequence or timing of other uncontrollable
events.

 A race condition may occur in a system of logic gates where inputs vary. If a given output
depends on the state of the inputs it may only be defined for steady-state signals. As the inputs
change state a small delay will occur before the output changes due to the physical nature of
the electronic system. The output may, for a brief period, change to an unwanted state before
settling back to the designed state. Certain systems can tolerate such glitches but if this output
functions as a clock signal for further systems that contain memory, for example, the system
can rapidly depart from its designed behaviour..

Types:
 Critical and non-critical forms

a) A critical race condition occurs when the order in which internal variables are changed

determines the eventual state that the state machine will end up in.

b) A non-critical race condition occurs when the order in which internal variables are changed does

not determine the eventual state that the state machine will end up in.

 Static, dynamic, and essential forms

a) A static race condition occurs when a signal and its complement are combined together.

b) A dynamic race condition occurs when it results in multiple transitions when only one is intended.

They are due to interaction between gates. It can be eliminated by using no more than two levels

of gating.

c) An essential race condition occurs when an input has two transitions in less than the total

feedback propagation time. Sometimes they are cured using inductive delay line elements to

effectively increase the time duration of an input signal.

Design techniques such as Karnaugh maps encourage designers to recognize and eliminate race
conditions before they cause problems. Often logic redundancy can be added to eliminate some kinds
of races.

RACE -FREE STATE ASSIGNMENT

 Once a reduced flow table has been derived for an asynchronous sequential circuit, the next step
in the design is to assign binary variables to each stable state. This assignment results in the
transformation of the flow table into its equivalent transition table.

 The primary objective in choosing a proper binary state assignment is the prevention of critical
races. Critical races can be avoided by making a binary state assignment in such a way that only
one variable changes at any given time when a state transition occurs in the flow table.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Glitch
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Analog_delay_line
https://en.wikipedia.org/wiki/Karnaugh_map
https://en.wikipedia.org/wiki/Logic_redundancy
http://Easyengineering.net

Three-Row Flow-Table Example

Fig: Three row flow table example

 To avoid critical races, we must find a binary state assignment such that only one binary variable
changes during each state transition.

 An attempt to find such an assignment is shown in the transition diagram.

 State a is assigned binary 00, and state c is assigned binary 11.

 This assignment will ca use a critical race during the transition from a to c because there are two
changes in the binary state variables and the transition from a to c may occur directly or pass
through b.

 Note that the transition from c to a also ca uses a race condition, but it is noncritical because the
transition does not pass through other states.

 A race-free assignment can be obtained if we add an extra row to the flow table. The use of a
fourth row does not increase the number of binary state variables, but it allows the formation of
cycles between two stable states.

 The transition table corresponding to the flow table with the indicated binary state assignment is
shown in Fig. The two dashes in row d represent unspecified states that can be considered don't-
care conditions. However, care must be taken not to assign 10 to these squares, in order to avoid
the possibility of an unwanted stable state being established in the fourth row.

Four-Row Flow-Table Example

A flow table with four rows requires a minimum of two state variables. Although a race-free assignment
is sometimes possible with only two binary state variables, in many cases the requirement of extra rows
to avoid critical races will dictate the use of three binary state variables

Fig: Four-row flow-table example

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

 The following figure shows a state assignment map that is suitable for any four-row flow table.
States a, b, c and d are the original states and e, f and g are extra states.

 The transition from a to d must be directed through the extra state e to produce a cycle so that
only one binary variable changes at a time.

 Similarly, the transition from c to a is directed through g and the transition from d to c goes
through f. By using the assignment given by the map, the four-row table can be expanded to a
seven-row table that is free of critical races.

Fig: State assignment to modified flow table
Note that although the flow table has seven rows there are only four stable states. The uncircled states
in the three extra rows are there merely to provide a race-free transition between the stable states.

Multiple-Row Method

 The method for making race-free stale assignments by adding extra rows in the flow table is
referred to as the shared-row method.

 A second method called the multiple-row method is not as efficient, but is easier to apply.

 In multiple- row assignment each state in the original row table is replaced by two or more
combinations of state variables.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Fig: Multiple row assignment

 There are two binary state variables for each stable state, each variable being the logical
complement of the other. For example, the original state a is replaced with two equivalent states
a1 =000 and a2 = 111.

 The output values, not shown here must be the same in a1 and a2. Note that a1 is adjacent to
b1, c2 and d1, and a2 is adjacent to c1, b2 and d2, and similarly each state is adjacent to three
states with different letter designations.

 The expanded table is formed by replacing each row of the original table with two rows. In the
multiple-row assignment, the change from one stable state 10 another will always cause a
change of only one binary state variable.

 Each stable stale has two binary assignments with exactly the same output.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

3. Design an asynchronous sequential circuit that has two inputs and and one output Z. When
 , the output Z is 0.The first change in that occurs while is 1 will cause output Z to be
1. The output Z will remain 1 until returns to 0.(16) [A/M’15]

State diagram

Primitive flow table constructed from state diagram

Flow table with state assignment

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

Flow table converted into a transition table

K-map simplification

Logic diagram

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

4. Show how to program the fusible links to get a 4 bit Gray code from the binary inputs using PLA and
PAL and compare the design requirements with PROM. (16) [N/D’15]
Gray code generator using PROM

PROM based binary to gray code converter

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

PAL based binary to gray code converter

Binary to gray code converter Boolean expression are concluded as

 ̅ ̅

 ̅ ̅

 ̅ ̅
It is noted that 4 x 7 x 4 PLA is needed to implement gray code converter and same for PAL also.
Total number of AND OR gates links are
96 – PLA
56 – PAL
64 – PROM

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

5. What are static – 0 and static – 1 hazard? Explain the removal of hazards using hazard covers in k-
map. (8) [M/J’16]
Static Hazards

A static hazard occurs when a single input variable change should cause no change in the output of

a combinational logic circuit, but a short glitch of the incorrect logic level occurs.

The problem occurs because real physical implementations of logic functions have finite propagation

times which are variable, and if two inputs to a gate should theoretically change simultaneously, one

will actually change before the other.

If more than one input variable changes "simultaneously" there is no way to guarantee that such

glitches will not occur.

Types of Static Hazards

Static – 1 hazard :- A static 1 hazard may occur in a two level sum of products (SOP)

implementation.

Static – 0 hazard :- A static 0 hazard may occur in a two level product of sums

(POS)implementation.

Example of Static Hazards

The Static '1' Hazard.

Let us consider an imperfect circuit that suffers from a delay in the physical logic elements i.e. AND

gates etc.

The simple circuit performs the function:

f = X1.X2 + X1'.X3

and the logic diagram can be shown as follows:

At the starting diagram, it is clear that if no delays were to occur, then the circuit would function
normally. However since this is not a perfect circuit, and an error occurs when the input changes

 from 111 to 011. i.e. When X1 changes state.

This Karnaugh Map shows the circuit. The two gates are shown by solid rings, and the hazard can
be seen under the dashed ring. The theory proved by Huffman tells us that by adding a redundant
loop 'X2X3' this will elimate the hazard. So the resulting logic is of the form shown in the next figure.

So our original function is now: f =X1.X2 + X1'.X3 + X2.X3

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

It is observed that even with imperfect logic elements, this example will not show signs of hazards

when X1 changes state. This theory can be applied to any logic system.

6. Explain cycles and races in asynchronous sequential circuits. (8) [M/J’16]

Races in asynchronous sequential circuits
 Race condition: „ two or more binary state variables will change value when one input

variable changes „ Cannot predict state sequence if unequal delay is encountered „
 Non-critical race: „ The final stable state does not depend on the change order of state

variables „ Critical race: „ The change order of state variables will result in different stable
states.

Cycles in asynchronous sequential circuits

 A cycle occurs when an asynchronous circuit makes a transition through a series of
unstable states.

 When a state assignment is made so that it introduces cycles.
 Care must be taken so that each cycle terminates on a stable state.
 If a cycle does not contain a stable state, the circuit will go from one unstable state to

another, until the inputs are changed.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

EE8351 – DIGITAL LOGIC CIRCUITS
UNIT – V

VHDL
PART – A

1. Write a VHDL code for 2 x 1 MUX. [N/D’14], [M/J’16], [A/M’17]
library ieee;
use ieee.std_logic_1164.all;
entity mux2_1 is
port (a,b,sel:instd_logic; c: out std_logic);
end mux2_1;
architecture muxarch of mux2_1 is
begin
process (a,b,sel)
begin
if s=’0’ then c<=a;else s=’1’ then c<=b; end if;
end process;
end muxarch;

2. State the advantage of package declaration over component declaration. [N/D’14]
Package declaration is used to declare components, types, constants, functions and so on.
Declared Packages will be shared by many design units.
Component declaration declares the name of the entity and interface of a component which is used
by the design unit. Declared Component will be used by the corresponding design unit.

3. What is a package in VHDL?[A/M’15]
A VHDL package contains subprograms, constant definitions, and/or type definitions to be used
throughout one or more design units. Each package comprises a "declaration section", in which the
available (i.e. exportable) subprograms, constants, and types are declared, and a "package body",
in which the subprogram implementations are defined, along with any internally-used constants and
types.

4. Write the behavioural modelling code for a D flip flop.[A/M’15], [N/D’15], [N/D’16]
Library ieee;
use ieee.std_logic_1164.all;
entity dff is
port (D,clk,rst:instd_logic; Q: out std_logic);
end dff;
architecture behave of dff is
begin
process (rst,clk) Begin
if rst=’0’ then Q<=’0’; elseclock’event and clk=’1’ then Q<=D;
end If;
end process;
end behave;

5. List out the operators present in VHDL.[N/D’15]
Logical operators, Arithmetic operators, Relational operators and shift operators.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

6. What is data flow modelling in VHDL? Give its basic mechanism.[M/J’16]
A dataflow style architecture models the hardware in terms of the movement of data over
continuous time between combinational logic components such as adders, decoders and primitive
logic gates.
Basic Mechanism:
entity entity_name is
port();
architecture dataflow of entity_name is
…..
begin
…
…
end dataflow;

7. Write the VHDL code for a logic gate which gives high output only when both the inputs are high.
[N/D’16]
entity andgate is
 port(A:in std_logic;

 B:in std_logic;
 Y: in std_logic);

end andgate

8. Give the syntax for package declaration and package body in VHDL.[A/M’17]
package package_name is

 {package_declarative_item}
end [package_name];

package body package_name is

 {package_declarative_item}
end [package_name];

9. What is the purpose of VHDL programming? Or what is the need for VHDL? [M/ J- 13]
Very high speed integrated circuit hardware description language. It is a language for describing a
hardware, which has to be readable for machines and humans at the same time & it structured and
comprehensible code, so that the source code can serve as a kind of specification document. Thus
it is used for studying digital logic circuits and testing its functions.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

PART – B
1. Write VHDL coding for 4 x 1 multiplexer. (7)[N/D’16]

4: 1 MUX

Truth Table:

Logic Diagram:

Program:

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

2. Write the VHDL code to realise a full adder using (16)[A/M’15]
3. Write a VHDL program for full adder using structural modelling. (8) [N/D’15]
4. Explain in detail the concept of structural modelling in VHDL with an example of full adder. (13)

[N/D’16]
5. Explain the concept of behavioural modelling and structural modelling in VHDL. Take the example

of full adder design for both and write the coding.(8) [N/D’14]

Truth Table: Logic Diagram

Program

a) Behavioural modelling
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity fab is
 Port (a : in std_logic;
 b : in std_logic;
 c : in std_logic;
 s : out std_logic;
 cr : out std_logic);
end fab;

architecture Behavioral of fab is
begin
 process(a,b,c)
 begin
 if(a='0' and b='0' and c='0')then
 s<='0';
 cr<='0';
 elsif(a='0' and b='0' and c='1')then
 s<='1';
 cr<='0';
 elsif(a='0' and b='1' and c='0')then
 s<='1';
 cr<='0';
 elsif(a='0' and b='1' and c='1')then
 s<='0';
 cr<='1';
 elsif(a='1' and b='0' and c='0')then
 s<='1';
 cr<='0';
 elsif(a='1' and b='0' and c='1')then
 s<='0';
 cr<='1';

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

 elsif(a='1' and b='1' and c='0')then
 s<='0';
 cr<='1';
 else
 s<='1';
 cr<='1';
 end if;
 end process;
 end Behavioral;

b) Structural modelling
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity full_adder is

 Port (a,b,cin : in STD_LOGIC;
 sum,cout : out STD_LOGIC);

end full_adder;

architecture fa_str of full_adder is
component xor2

 port(d1,d2:in std_logic;
 dz:out std_logic);

end component;
component or2

 port(n1,n2:std_logic;
 z:out std_logic);

end component;
component and2

 port(a1,a2:in std_logic;
 u:out std_logic);

end component;
signal s1,s2,s3,s4,s5:std_logic;
begin

 x1:xor2 port map(a,b,s1);
 x2:xor2 port map(s1,cin,sum);
 r1:and2 port map(a,b,s2);
 r2:and2 port map(b,cin,s3);
 r3:and2 port map(a,cin,s4);
 o1:or2 port map(s2,s3,s5);
 o2:or2 port map(s4,s5,cout);

 end fa_str;

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

6. Write a VHDL program for 1 to 4 Demux using dataflow modelling. (8) [N/D’15]
Truth Table: Logic Diagram:

Program:

library IEEE;
use IEEE.std_logic_1164.all;

entity bejoy_1x4 is
port(s1,s2,data_in : in std_logic;
d1,d2,d3,d4 : out std_logic);
end bejoy_1x4;

architecture arc of bejoy_1x4 is

component dmux
port(sx1,sx2,d : in std_logic;
z1,z2 : out std_logic);
end component;

begin
dmux1 : dmux port map(s1,s2,data_in,d1,d2);
dmux2 : dmux port map(not s1,s2,data_in,d3,d4);
end arc;

library ieee;
use ieee.std_logic_1164.all;

entity dmux is
port(sx1,sx2,d :in std_logic;
z1,z2: out std_logic);
end dmux;

architecture arc of dmux is
begin
z1 <= d and (not sx1) and (not sx2);
z2 <= d and (not sx1) and sx2;

 end arc;

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

7. Explain in detail the RTL design procedure. (16) [N/D’15]
1. Capture a HLSM

 Create a HLSM diagram to describe the system’s intended behavior.
2. Convert to a Circuit

a) Create a datapath

 Create a datapath to carry out the data operations of the HLSM.

 Use components from a library

 Include registered outputs.
b) Connect the datapath to a controller

 Connect all control signals to the circuit
c) Derive the controller’s FSM.

 Convert the HLSM to a FSM for the controller
 Replace data operations with setting and reading of control signals to and from

the datapath.

 Create a circuit for the controller from the FSM
Example:

Design a system to control the speed of the conveyor belt on a treadmill.

 Speed is a 4 bit value that is controlled by two buttons
 Up button increases speed by one
 Down button decreases speed by one
 If both are pushed, no change in speed occurs. Speed must initialize to zero upon

startup.

Convert to a Circuit

1. Create a data path

 Create a data path to carry out the data operations of the HLSM.

 Use components from a library

 Include registered outputs.

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

2. Convert to a Circuit

 Connect the datapath to a controller

 Connect all control signals to the circuit

 Convert to a Circuit
o Derive the controller’s FSM.
o Convert the HLSM to a FSM for the controller
o Replace data operations with setting and reading of control signals to and from the

datapath.
o Create a circuit for the controller from the FSM

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

8. Explain the various operators supported by VHDL. (8) [M/J’16]
9. Write short notes on built – in operators used in VHDL programming. (6) [N/D’16]

Logical Operators

Examples:

carry <= a and b or a and c or b and c;
zout <= (not a) and b;

Relational Operators

Example:
 data <= (a=0) and (b=1);

Arithmetic Operators

 The circuit used for an arithmetic operator will be entirely combinational logic

 Arithmetic operators are implemented in two’s complement

 The negation operator is implemented as a two’s complement negation. Two’s complement
negation is performed by subtracting the input from zero

 The add operator is usually implemented as a ripple-carry adder. The same circuit is used
for either signed or unsigned arithmetic.

 The subtractor operator is implemented as a ripple-borrow subtractor

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

VHDL Mathematical Operators

VHDL Shift Operators

Visit : www.Easyengineering.net

Visit : www.Easyengineering.net

http://Easyengineering.net

