DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE8351 DIGITAL LOGIC CIRCUITS
 UNIT - I
 NUMBER SYSTEM AND DIGITAL LOGIC
 FAMILIES Part - A

1. Determine (377) ${ }_{10}$ in octal and Hexa-decimal equivalent.[N/D'14]

$(377) 10=(571) 8$
2. Compare the totem - pole output with open collector output. [N/D'14]

S.No.	Totem pole	Open Collector
1.	Output stage consists of pull-up transistor, diode resistor and pull- down transistor.	Output stage consists of only pull- down transistor.
2.	External pull-up resistor is not required	External pull-up resistor is required for proper operation of gates.
3.	Operating speed is high.	Operating speed is low.
4.	Output of two gates cannot be tied together.	Output of two gates can be tied together using wired AND technique.

3. Convert : [A/M'15]
a) $(475.25)_{8}$ to its decimal equivalent.

$$
\begin{aligned}
& =4 \times 8^{2}+7 \times 8^{1}+5 \times 8^{0}+2 \times 8^{-1}+5 \times 8^{-2} \\
& =256+56+5+0.25+0.078125 \\
& =(317.32814) 10
\end{aligned}
$$

b) (549. $B 4)_{16}$ to its binary equivalent.

$$
\begin{aligned}
& =5 \times 16^{2}+4 \times 16^{1}+9 \times 16^{1}+11 \times 16^{-1}+4 \times 16^{-2} \\
& =261+64+9+0.6875+0.01562 \\
& =(334.703) 10
\end{aligned}
$$

4. Define propagation delay. [A/M'15]

Propagation delay is the average transition delay time for the signal to propagate from
input to output then the signals change in value. It is expressed in ns.
5. What is unit distance code? Give an example. [N/D'15]

Unit distance code is a non- weighted code in which next increment or decrement causes the bit transition only at one place. Ex: Gray code.
6. Define Fan-out. [N/D'15]

Fan- Out is defined as the maximum number of inputs of several gates that can be
driven by the output of logic gate maintaining its output levels within the specified
limits.
7. Construct OR gate and AND gate using NAND gate. [N/D'16]

8. Convert the following Excess-3 numbers into decimal numbers [N/D'16]
a) 1011
b) 100100110111
a) Binary equivalent of Excess-3 1011 is $\rightarrow 1000$

Decimal equivalent of $1000 \rightarrow(8)_{10}$
b) Binary equivalent of Excess-3 100100110111 is $\rightarrow 011000000100$ Decimal equivalent of $1000 \rightarrow(604)_{10}$
9. Reduce $a\left(b+b^{\prime} c\right)+a b^{\prime}[$ [A/M'17]

$$
\begin{aligned}
& a\left(b+b^{\prime} c\right)+a b^{\prime}=a b+a b^{\prime} c+a b^{\prime} \\
& \quad=a\left(b+b^{\prime}\right)+a b^{\prime} c=a+a b^{\prime} c
\end{aligned}
$$

10. Convert 143_{10} into binary and binary coded decimal equivalent. [A/M'17]

Binary coded decimal equivalent $\rightarrow 143_{10}$ is 000101000011

DIGITAL LOGIC CIRCUITS
 UNIT - I
 NUMBER SYSTEM AND DIGITAL LOGIC FAMILIES

Part - B

1. Explain Hamming code with an example. State its advantages over parity codes. (8) [N/D'14]

- Hamming code is a set of error-correction code s that can be used to detect and correct bit errors that can occur when computer data is moved or stored.
- Hamming codes can detect up to two-bit errors or correct one-bit errors without detection of uncorrected errors.
- Hamming codes are perfect codes for achieving the highest possible rate for codes with their block length and minimum distance called as min Hamming distance.
- A Hamming can be applied to the data unit of any length and uses the relationship between data and redundancy bits.
- For example the seven bit ASCII code requires 4 redundancy bits that can be added to the end of the data or between the original data bits.

- In Hamming code, the position of r bits is as follows:
- r_{1} - bits $1,3,5,7,9,11$
- r_{2} - bits 2.3.6.7,10,11
- r_{3} - bits $4,5,6,7$
- r_{4}-bits $8,9,10,11$
$>$ The position of r_{1} is chosen for the values which has 1 in the right most position.
$>$ The position of r_{1} is chosen for the values which has 1 in the second last position.
$>$ The position of r_{1} is chosen for the values which has 1 in the third last position.
$>$ The position of r_{1} is chosen for the values which has 1 in the fourth last position and so on.

Example of Hamming Code:

Adding r_{1}

| | \mid | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Adding r_{2}	1	0	0	1	1	0	1	0	1

Adding $r 4$| 1 | 0 | 0 | | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Code: 10011100101
Advantages of Hamming code over parity codes
$>$ The advantage of Hamming code over a simple parity system that it can correct a single bit error and can also detect 2-bit errors.
$>$ Whereas a parity system with one parity bit can detect single bit errors but cannot correct them.
2. Design TTL logic circuit for a 3-input NAND gate. (8) [N/D'14]

If any input is low, the corresponding base-emitter junction becomes forwardbiased and the transistor conducts.
\geqslant The other characteristics of the circuit and its transfer characteristic are identical to those of the inverter circuit.
3. Draw the MOS logic circuit for NOT gate and explain its operation. (8) [N/D'14]

- When a low voltage $(0 \mathrm{~V})$ is applied at the input, the top transistor (P-type) is conducting (switch closed) while the bottom transistor behaves like an open circuit.
- Therefore, the supply voltage $(5 \mathrm{~V})$ appears at the output.
- Conversely, when a high voltage $(5 \mathrm{~V})$ is applied at the input, the bottom transistor (N-type) is conducting (switch closed) while the top transistor behaves like an open circuit.
- Hence, the output voltage is low $(0 \mathrm{~V})$.
- The function of this gate can be summarized by the following table:

Input	Output
High (logic1)	Low (logic 0)
Low (logic 0)	High (logic1)

- The output is the opposite of the input - this gate inverts the input.
- One of the transistors will be an open circuit and no current flows from the supply voltage to ground.

4. With circuit schematic, explain the operation of a two input TTL NAND gate with totempole output. (10) [A/M'15]
5. With circuit schematic explain the working of a two - input TTL NAND gate. (7) [A/M'17]

- The circuit structure is identical to TTL inverter circuit except for the multiple emitter input transistor.
- This is used to implement a diode switching structure in active transistor form using parallel junction diffusions for several emitters.

Fig, 3.1 Multiple Input Emitter Structure of TTL

- If any input is low, the corresponding base-emitter junction becomes forward-biased and the transistor conducts.
- The other characteristics of the circuit and its transfer characteristic are identical to those of the inverter circuit.

Logical Operation

- The direction of conduction of T1 can be in the forward or reverse mode so this should also be noted in the table.
- It can be seen from the table that the output goes LO only when both inputs are HI which verifies the NAND function.

IN1	IN2	T_{1}	T_{2}	T_{3}	T_{4}	D	Output
LO	LO	ON	OFF	OFF	ON	ON	HI
LO	HI	ON	OFF	OFF	ON	ON	HI
HI	LO	ON	OFF	OFF	ON	ON	HI
HI	HI	ON	ON	ON	OFF	OFF	LO

Fig. 3.2 Circuit Diagram of a Standard 2-input TTL NAND Gate
6. Compare totem pole and open collector outputs. (6) [A/M'15]
7. Compare Totem pole and open collector outputs. (6) [A/M'17]

NAND gate with Totem pole output

- Below is the circuit of a totem-pole NAND gate, which has got three stages
- Input Stage
- Phase Splitter Stage
- Output Siäge

Standard TTL NAND gate

NAND gate with collector output

S.No.	Totem pole	Open Collector
1.	Output stage consists of pull-up transistor, diode resistor and pull- down transistor.	Output stage consists of only pull-down transistor.
2.	External pull-up resistor is not required	External pull-up resistor is required for proper operation of gates.
3.	Operating speed is high.	Operating speed is low.
4.	Output of two gates cannot be tied together.	Output of two gates can be tied together using wired AND technique.

8. Draw the CMOS logic circuit for NOR gate and explain its operation. (8) [N/D'15]

- The circuit has two inputs and one output.
- Whenever at least one of the inputs is high, the corresponding N-type transistor will be closed while the P-type transistor will be open.
- Consequently, the output voltage will be low.
- Conversely, if both inputs are low, then both P-type transistors at the top will be closed circuits and the N-type transistors will be open.
- Hence, the output voltage is high.
- The function of this gate can be summarized by the following table:

Input (A) \because	Input (B)	Output
Low	Low	High
Low	High	Low
High	Low	Low
High	High	Low

- If logical 1's are associated with high voltages then the function of this gate is called NOR for negated OR.

- There is never a conducting path from the supply voltage to ground.

9. Explain with an aid of circuit diagram the operation of 2 input CMOS NAND gate and list out its advantages over other logic families. (10) [N/D'16]

- The circuit has two inputs and one output.
- Whenever at least one of the inputs is low, the corresponding P-type transistor will be conducting while the N-type transistor will be closed.
- Consequently, the output voltage will be high.
- Conversely. if hoth inputs are high, then both P-type transistors at the top will be open circuits and both N-type transistors will be conducting.
- Hence, the output voltage is low.
- The function of this gate can be summarized by the following table:

Input (A)	Input (B)	Output
Low	Low	High
Low	High	High
High	Low	High
High	High	Low

- If logical 1's are associated with high voltages then the function of this gate is called NAND for negated AND.
- There is never a conducting path from the supply voltage to ground.

Advantages of CMOS over other logic families
a) Low power consumption
b) High fan out
c) Temperature stability
d) Noise immunity
10. Briefly discuss weighted Binary code. (4) [N/D'15] Weighted Codes:

- The main characteristic of a weighted code is, each binary bit is assigned by a "weight" and values depend on the position of the binary bit.
- The sum of the weights of these binary bits, whose value is 1 is equal to the decimal digit which they represent.
- In other words, if $w 1, w 2, w 3$ and $w 4$ are the weights of the binary digits, and $\mathrm{x} 1, \mathrm{x} 2$, x 3 and x 4 are the corresponding bit values, then the decimal digit $\mathrm{N}=\mathrm{w} 4 \mathrm{x} 4+$ $w 3 \times 3+w 2 \times 2+w 1 \times 1$ is represented by the binary sequence $x 4 \times 3 \times 2 \times 1$.
- A sequence of binary bits which represents a decimal digit is called a "code word".
- Thus $\times 4 \times 3 \times 2 \times 1$ is a code word of N.
- Example of these codes is: BCD, 8421, 6421, 4221, 5211, 3321 etc.
- Weighted codes are used in:
a) Data manipulation during arithmetic operation.
b) For input/output operations in digital circuits.
c) To represent the decimal digits in calculators, volt meters etc.

Visit: www.Easyengineering.net
Encode the binary word 1011 into seven bit even parity Hamming code.
(8) $\left[A / M^{\prime} 15\right]$

Solution:

Given the binary word

$$
\begin{array}{cccc}
b_{3} & b_{2} & b_{1} & b_{0} \\
1 & 0 & 1 & 1
\end{array}
$$

The p-bit Hamming $(7,4)$ code word $h_{1} h_{2} h_{3} h_{4} h_{5} h_{6} h_{7}$ associated with a 4-bit binary number $b_{3} b_{2} b_{1} b_{0}$ and is given as

$$
\begin{aligned}
& \text { given as } \\
& h_{1}=b_{3} \oplus b_{2} \oplus b_{0}=1 \oplus 0 \oplus 1=0 \\
& h_{2}=b_{3} \oplus b_{1} \oplus b_{0}=1 \oplus 1 \oplus 1=1 \\
& h_{3}=b_{3}=0 \\
& h_{4}=b_{2} \oplus b_{1} \oplus b_{0}=0 \oplus 1 \oplus 1=0 \\
& h_{5}=b_{2}=0 \\
& h_{6}=b_{1}=1 \\
& h_{7}=b_{0}=1
\end{aligned}
$$

\therefore The 7 -bit even parity Hamming code is

$$
\begin{array}{ccccccc}
n & \text { as } \\
h_{1} & h_{2} & h_{3} & h_{4} & h_{5} & h_{6} & h_{7} \\
0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}
$$

Visit : www.Easyengineering.net
Perform the following addition using $B C D$ and Excess-3 addition

$$
(205+569)(8) \quad\left[1 / m^{\prime} 15\right]
$$

Solution:
BCD Addition

Excess-3 Addition

$$
\begin{aligned}
\text { Excess -3 code of } 205 \\
1
\end{aligned}
$$

Excess -3 code of 569
100010011100

Visit : www.Easyengineering.net

$$
\begin{aligned}
& 205 \rightarrow 010100111000 \\
& 569 \rightarrow \frac{100010011100}{11011100110100} \\
& \text { code } \\
& \text { Add } 3 \text { to } \\
& \text { correct } \\
& 0000
\end{aligned}
$$

Binary equivalent of Excess-3code

$$
\begin{array}{cccc}
\text { Binary } & 1010 & 1010 & 0111 \\
& 111 & 0111 & 0100 \\
205 & 0111 & 11 & 18 \\
569 & 7 & 7 & 4 \\
774 & 7 & &
\end{array}
$$

A 12 -bit Hamming code word containing 8 -bits of data and 4 parity pits is read from memosel. What was the original 8 -bit data word that has been written into memory if the 12 -bit word read out is as

$$
\text { (12) }\left[N / D^{\prime} 15\right]
$$

(1) 101110010100
(2) 111111110100

Solution:
(1) 101110010100

12 -bit Hamming code is given as

$$
\begin{array}{cccccccc}
12 \text {-bit Hamming Code is given a } \\
D_{12} & D_{11} & D_{10} & D_{9} & P_{8} & D_{7} & D_{6} & D_{5} \\
1 & 0 & 1 & P_{4} & D_{3} & P_{2} \\
0 & 0 & P_{1} \\
0
\end{array}
$$

$P_{1}, P_{2}, P_{3} \& P_{4}$ are parity bits anile the remaining hits are data-bits. $\therefore 8-b i t$ data is 10110011
(2) 111111110100 12-bir Hamming code

$$
\begin{aligned}
& \text { 12-bit Hamming code } \\
& D_{12} D_{11} \\
& 1
\end{aligned} D_{10} D_{9} \quad 1 \begin{aligned}
& P_{8} \\
& 1
\end{aligned} \mathbb{P}_{7} D_{6} \begin{gathered}
5 \\
1
\end{gathered} 1
$$

8 -bit data is 11111111

UNIT - II COMBINATIONAL CIRCUITS

Part-B

1. Design a 4-Bit binary to gray code converter and implement it using logic gates.
(8)[N/D'14]

- The logical circuit which converts binary code to equivalent gray code is known as binary to gray code converter.
- The gray code is a non weighted code.
- The successive gray code differs in one bit position only that means it is a unit distance code. It is also referred as cyclic code. It is not suitable for arithmetic operations. It is the most pupular of the unit distance codes. It is also a reflective code.

Decimal Number	4 bit Binary Number									4 Bit Gray code						
	A	B	C	D	G_{1}	G_{2}	G_{3}	G_{4}								
0	0	0	0	0	0	0	0	0								
1	0	0	0	1	0	0	0	1								
2	0	0	1	0	0	0	1	1								
$3 \ldots$	0	0	1	1	0	0	1	0								
4	0	1	0	0	0	1	1	0								
5	0	1	0	1	0	1	1	1								
6	0	1	1	0	0	1	0	1								
7	0	1	1	1	0	1	0	0								
8	1	0	0	0	1	1	0	0								
9	1	0	0	1	1	1	0	0								
10	1	0	1	0	1	1	1	1								
11	1	0	1	1	1	1	1	0								
12	1	1	0	0	1	0	1	0								
13	1	1	0	1	1	0	1	1								
14	1	1	1	0	1	0	0	1								
15	1	1	1	1	1	0	0	0								

That means. in 4 bit gray code, (4-1) or 3 bit code is reflected against the axis drawn after $\left(2^{4-1}\right)^{\text {th }}$ or $8^{\text {th }}$ row.
The bits of 4 bit gray code are considered as $\mathrm{G}_{4} \mathrm{G}_{3} \mathrm{G}_{2} \mathrm{G}_{1}$. Now from conversion table,

$$
\begin{aligned}
& G_{4}=\sum m(8,9,10,11,12,13,14,15), G_{3}=\sum m(4,5,6,7,8,9,10,11) \\
& C_{2}-\sum m(2,3,4,5,10,11,12,13), \quad G_{1}=\sum m(1,2,5,6,9,10,13,14)
\end{aligned}
$$

K-map Simplification

(G)

(G)

(G)

Logic Diagram:

Logic Circuit for Binary to Gray Code Converter
2. Design a full subtractor and implement it using logic gates. (8)[N/D'14]

Full Subtractor:-

- Full subtractor performs subtraction of two bits, one is minuend and other is subtrahend.
- The input of a full subtractor consists of three bits (A, B and Bin) and two outputs are DIFFERENCE output (D) and BORROW (Bout)
- Full subtractor performs subtraction of two bits, one is minuend and other is subtrahend. In full subtractor ' 1 ' is borrowed by the previous adjacent lower minuend bit.

Truth Table

Input			Output	
A	B	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

K-map Simplification

Fig. 3.21 Maps for full-subtractor

Logic Diagram using logic gates

Fig. 3.23 implementation of full-subtractor

Logic Diagram using half subtractors

Fig. 3.24 Implementation of a full-subtractor with two half-subtractors and an OR gate
3. Design a $B C D$ to Exces-3 code converter. (8) [A/M'15]

Truth table:

	BCD				Fxcess-			
	A	\mathbf{B}	C	\mathbf{D}	W	X	Y	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	$\mathbf{1}$	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	U	0	1	0	1	1
9	1	0	0	1	1	1	0	0
10	1	0	1	0	X	X	X	X
11	1	0	1	1	X	X	X	X
12	1	1	0	0	X	X	X	X
13	1	1	0	1	X	X	X	X
14	1	1	1	0	X	X	X	X
15	1	1	1	1	X	X	X	X

K-map Simplification

Logic Diagram of BCD to Excess-3 code converter

4. Design a full adder using two half adders and an OR gate. (8)[A/M'15]
5. Design a full adder using only NOR gates. (6) [A/M'17]

- An adder is a digital circuit that performs addition of numbers.
- The half adder adds two binary digits called as augend and addend and produces two outputs as sum and carry; XOR is applied to both inputs to produce sum and AND gate is applied to both inputs to produce carry.

Full Adder

- The full adder adds 3 one bit numbers, where two can be referred to as operands and one can be referred to as bit carried in. And produces 2-bit output, and these can be referred to as output carry and sum.
- The difference between a half-adder and a full-adder is that the full-adder has three inputs and two outputs, whereas half adder has only two inputs and two outputs.
- The first two inputs are A and B and the third input is an input carry as C-IN.

Full Adder Truth Table:

INPUTS			OUTPUT	
\mathbf{A}	\mathbf{B}	C-IN	C-OUT	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

For Carry ($\mathrm{C}_{\text {out }}$)

$C_{\text {out }}=A B+A C_{\text {in }}+B C_{\text {in }}$

For Sum

Sum $=\bar{A} \bar{B} C_{i n}+\bar{A} B \bar{C}_{\text {in }}+A \bar{B} \bar{C}_{\text {in }}+A B C_{\text {in }}$

Fig. 3.15 Maps for full-adder

Logic Diagram using half adders

6. Design a 3×8 decoder and explain its operation as a minterm generator. (7) [A/M'17]

Truth table:

Inputs				Outputs							
EN	A	B	c	Y_{7}	\mathbf{Y}_{6}	Y_{5}	Y_{4}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	\times	\times	\times	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

Logic function:

$$
\begin{aligned}
& Y_{0}=A^{\prime} B^{\prime} C^{\prime} \\
& Y_{1}=A^{\prime} B^{\prime} C \\
& Y_{2}=A^{\prime} B C^{\prime} \\
& Y_{3}=A^{\prime} B C \\
& Y_{4}=A B^{\prime} C^{\prime} \\
& Y_{5}=A B^{\prime} C \\
& Y_{6}=A B C^{\prime} \\
& Y_{7}=A B C
\end{aligned}
$$

Logic Diagram:

7. Design a full subtractor and realize using logic gates. (8) [N/D'15]
8. Design a full subtractor and realize using logic gates. Also implement the same using half subtractors. (13) [N/D'16]

Truth Table:

Inputs			Outputs	
\mathbf{A}	\mathbf{B}	$\mathbf{B}_{\text {in }}$	\mathbf{D}	$\mathbf{B}_{\text {out }}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Table 3.9. Truth table for full-subtractor

K-map simplification:

For D

$D=A B B_{i n}+\overline{A B} \bar{B}_{\text {in }}+A \bar{B} \bar{B}_{\text {in }}+A B B_{\text {in }}$

For $\mathrm{B}_{\text {out }}$

$$
B_{\text {out }}=\overline{A B}_{B_{\text {n }}}+\overline{A B}+B B_{\text {in }}
$$

Fig. 3.21 Maps for full-subtractor

Full subtractor using two half subtractors

Fig. 3.24 Implementation of a full-subtractor with two half-subtractors and an OR gate

Full subtractor using logic gates

Fig. 3.23 implementation of full-subtractor
9. Design a full adder using only NOR gates. (6) [A/M'17]

Full adder using NOR logic
www.circuitstoday.com

Simplify the logical expression using K-map in sop and pos form. (13) [N/D'16]

$$
F(A, B, C, D)=\operatorname{\sum m}(0,2,3,6,7)+d(8,10,11,15)
$$

Truth Table:

$$
\underline{y}(S O P)
$$

A	B	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	x
1	0	0	1	0
1	0	1	0	x
1	0	1	1	x
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	x

$$
Y=\bar{B} \bar{D}+\bar{A} C
$$

$$
y=(A+B)(\bar{C}+D)
$$

Y in Sop form	$y=\bar{B} \bar{D}+\bar{A} C$
y in	$y=(A+B)(\bar{C}+D)$
$P O S$ form	

Visit: www.Easyengineering.net
Simplify the Booban function using k-map and implement using only NAND gates

$$
F(A, B, C, D)=\operatorname{Sm}(0,8,11,12,15)+\sum d(1,2,4,7,10,14)
$$

Make the essential and ron-essential Prime implicants. (8) $\left[N / D^{\prime} 15\right]$

$$
F=A C+A \bar{D}+\bar{B} \bar{D}
$$

Essential Prime Implicants:
$A C, A \bar{D}$
Non-essential Primeximplicants $\bar{B} D$

Logic Diagram

$$
F=A C+A \bar{D}+\bar{B} \bar{D}
$$

Visit: www.Easyengineering.net
Reduce the following function using k - map

$$
\begin{aligned}
& F(A, B, C, D)=\pi M(0,2,3,8,9,12,13,15) \\
& (\delta)\left[A / M^{\prime} 15\right]
\end{aligned}
$$

A	B	C	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

$$
\begin{aligned}
F= & (\bar{A}+\bar{B}+C)(A+\bar{C}) \\
& (\bar{B}+\bar{C}+\bar{D})(A+B+D)
\end{aligned}
$$

Visit : www.Easyengineering.net

- Implement the function: $F(P, q, r, s)=\sum(0,1,2,4,7,10,11,12)$ using decoder. (8) $\left[N / D^{\prime} 14\right]$

Visit: www.Easyengineering.net
Minimize the function $F(a, b, c, d)=\sum(0,4,6,8,9,10,12)$ with $d=\Sigma(2,13)$. Implement the function using only NOR gates (8) $\left[N / D^{\prime} 14\right]$

a	b	c	d	F
D	0	0	0	1
0	0	0	1	x
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	x
1	1	1	0	0
1	1	1	1	0

\mathcal{F}

$$
\begin{aligned}
& F(a, b, c, d) \\
& =\bar{c} \bar{d}+\bar{b} \bar{d}+a \bar{c}+\bar{a} \bar{d}
\end{aligned}
$$

Visit: www.Easyengineering.net
Logic Diagram:

$$
F=\bar{c} \bar{d}+\bar{b} \bar{d}+a \bar{c}+\bar{a} \bar{d}
$$

EE6301 - DIGITAL LOGIC CIRCUITS

UNIT - III
SYNCHRONOUS SEQUENTIAL CIRCUITS
Part - A

1. Convert T flip into D Flip flop [A/M-2015]
2. Truth Table for T Flip Flop

Input	Outputs	
\mathbf{T}	$\mathbf{Q}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}+1}$
0	0	0
0	1	1
1	0	1
1	1	0

3. Conversion Table

\mathbf{T}	$\mathbf{Q}_{\mathbf{n}}$	$\mathbf{Q}_{\mathrm{n}+1}$	\mathbf{D}
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

2. Excitation Table for D Flip Flop

Outputs		Input
$\mathbf{Q}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{a}+1}$	\mathbf{D}
0	0	0
0	1	1
1	0	0
1	$\mathbf{1}$	1

4. K-map Simplification

$$
\begin{aligned}
\mathrm{D} & =\mathrm{T} \bar{Q}_{n}+\overline{\mathrm{T}} \mathrm{Q}_{n} \\
& =\mathrm{T} \oplus \mathrm{Q}_{n}
\end{aligned}
$$

2. State the rules for state assignment [AMM-2015]

- States which have the same next state, for a given input, should be given adjacent assignments
- States which are the next states of the same state should be given adjacent assignments
- To simplify the output function, states which have the same output for a given input should be given adjacent assignments.

3. Draw the truth table and state diagram of SR flip-flop [N/D-2015]

The SR flip-flop state table

S	R	$Q(t+1)$
0	0	$Q(i)$
0	1	0
1	0	1
1	1	x

The state diagram is

$Q(1+1)=S+R^{\prime}(1)$

S	R	Q	State
0	0	Previous Sate	Nocharge
0	1	0	Reset
1	0	1	Set
1	1	$?$	Forbidden

characteristic
equation
4. Draw the state diagram of JK flip flop. [N/D-16]

5. What is edge triggered flip flops? [N/D-2015]

An edge-triggered flip-flop changes states either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock pulse on the control input.

Inputs Outputs

D	C	\mathbf{a}	$\boldsymbol{\alpha}$	Comments
0	\uparrow	0	1	RESET
1	\uparrow	1	0	SET

If there is a HIGH on the D input when a clock pulse is applied, the flip-flop SETs and stores a 1. If there is a LOW on the D input when a clock pulse is applied, the flip-flop RESETs and stores a 0.
6. State any two differences between Moore and Mealy state machines.[M/J-2016] [N/D-16]

	Mealy	Moore
(1)	O/Ps depend on the present state and present I/Ps	O/Ps depend only on the present state
(2)	The O/P changes asyn -chronously with the enabling clock edge	Since the O/Ps change when the state changes, and the state change is synchronous with the enabling clock edge, O/Ps change synchronously with this clock edge
(3)	A counter is not a Mealy machine	A counter is a Moore machine (o/ps = state bits)

7. Give the Characteristic equation and characteristic table of SR flip-flop.[M/J-2016]

Characteristic table of SR flip-flop:

S	R	Q_{n}	Q_{n+1}	State
0	0	0	0	No Change
0	0	1	1	
0	1	0	0	Reset
0	1	1	0	
1	0	0	1	Set
1	0	1	1	
1	1	0	X	Invalid
1	1	1	X	

Characteristic equation of SR flip-flop

$$
Q_{n+1}=S+R^{\prime} Q_{n}
$$

UNIT - III
Part - B

1. Explain the operation of a master slave JK flip fiop (8) [A/M-2015]. [M/J-2016]

- Master-slave flip flop is designed using two separate flip flops.
- Out of these, one acts as the master and the other as a slave. The figure of a master-slave J-K flip flop is shown below.

- Both the J-K flip flops are connected in a series connection.
- The output of the master J-K flip flop is fed to the input of the slave J-K flip flop.
- The output of the slave J-K flip flop is given as a feedback to the input of the master J-K flip flop.
- The clock pulse [Clk] is given to the master J-K flip flop and it is sent through a NOT Gate and thus inverted before passing it to the slave J-K flip flop.

Operation

- When $\mathrm{Clk}=1$, the master J-K flip flop gets disabled. The CIk input of the master input will be the opposite of the slave input. So the master flip flop output will be recognized by the slave flip flop only when the Clk value becomes 0 .
- When the clock pulse males a transition from 1 to 0 , the locked outputs of the master flip flop are fed through to the inputs of the slave flip-flop making this flip flop edge or pulse-triggered.

Figure 3 Timing diagram for master-slave JK fip-flop

- Thus, the circuit accepts the value in the input when the clock is HIGH, and passes the data to the output on the falling-edge of the clock signal.
- This makes the Master-Slave J-K flip flop a Synchronous device as it only passes data with the timing of the clock signal.

2. Design a 3 -bit bidirectional shift register. (8) [A/M-2015]

- The above diagram shows 3-bit Bi-directional Shift register, this type of register allows shifting of data either to the left side or to the right side.
- It is implemented by using logic gate circuitry that enables the transfer of data from one stage to the next stage to left or to the right, depending on the level of a control line.
- The RIGHT/LEFT -----RIGHT/LEFT_ is the control input signal which allows data shifting either towards right or towards left. A high on this line enables the shifting of data towards right and a low enables it towards left.
- When RIGHT/LEFT------RIGHT/LEFT_ signal is high, out of the pair of each 2 AND gates the first AND gate from each of the pair is enabled.
- The state of the Q output of each Flip Flop is passed through the input of the following flip flop. When the clock pulse arrives, the data are shifted one place to the right.
- When RIGHT/LEFT------RIGHT/LEFT_ signal is low, out of the pair of each 2 AND gates the second AND gate from each of the pair is enabled.
- The state of the Q output of each Flip Flop is passed through the input of the preceding flip flop. When the clock pulse arrives, the data are shifted one place to the left.

3. Design a MOD-5 synchronous counter using JK flip-flops (8) [AMM-2015]

State Diagram:

State Diagram of Mod - 5 Counter

State Table:

PS				NS										
q_{2}	q_{1}	q_{0}	Q_{2}	Q_{1}	Q_{0}	$\mathrm{~J}_{2}$	$\mathrm{~K}_{2}$	$\mathrm{~J}_{1}$	$\mathrm{~K}_{1}$	$\mathrm{~J}_{0}$	$\mathrm{~K}_{0}$			
0	0	0	0	0	1	0	X	0	X	1	X			
0	0	1	0	1	0	0	X	1	X	X	1			
0	1	0	0	1	1	0	X	X	0	1	X			
0	1	1	1	0	0	1	X	X	1	X	1			
1	0	0	0	0	0	X	1	0	X	0	X			
-	-	$-\cdots$	$-\cdots$	-	-	-	-	\cdots	\cdots	-	-			
1	0	1	X	X	X	X	X	X	X	X	X			
1	1	0	X	X	X	X	X	X	X	X	X			
1	1	1	X	X	X	X	X	X	X	X	X			

K-map simplification

(3) for $J_{1} \quad J_{1}=q_{0}$

(5) for $J_{0} \quad J_{0}=\bar{q}_{0}$

(6) for $K_{0} \quad K_{0}=1$

Logic Diagram:

4. Design a sequence detector to detect the sequence 101 using JK flip flop (8) [A/M-2015]

State Diagram

Fig3. State diagram for 101 detector

State table'

Present state	Next state		Output	
	$\mathrm{x}=0$	$\mathrm{x}=\mathbf{1}$	$\mathrm{x}=0$	$\mathrm{x}=\mathbf{1}$
a	a	b	0	0
b	c	b	0	0
c	a	d	0	1
d	c	b	0	0

Fig4. State table for above state diagram

Excitation table:

laput I	Prescat state		Next state		F/F inputs		$\begin{gathered} \text { Output } \\ \mathbf{Y} \\ \hline \end{gathered}$
	B	A	B+1	$\lambda+1$	D_{8}	$\mathrm{D}_{\mathbf{A}}$	
0	0	0 (a)	0	0 (a)	0	0	0
0	0	1 (b)	1	0 (c)	1	0	0
0	1	0 (c)	0	0 (a)	0	0	0
0	1	1 (d)	1	0 (c)	1	0	0
1	0	0 (a)	0	1 (b)	0	1	0
1	0	1 (b)	0	I (b)	0	1	0
1	1	0 (c)	1	1 (d)	1	1	0
1	1	1 (d)	0	1 (b)	0	1	1

Figj. Excitation table
K-map simplification:

Logic Diagram:

Draw the logic diagram :

Fig7. Circuit diagram for implementation of 101 sequence detector
5. Realize T flip flop using JK flip flop. (4) [N/D - 2015],

State Table

\mathbf{T}	$\mathbf{Q}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n + 1}}$	\mathbf{J}	\mathbf{K}
0	0	0	0	X
0	1	1	X	0
1	0	1	1	X
1	1	0	X	1

K-map simplification

Logic Diagram

6. Write short notes on SIPO and draw the output waveform.(6) [N/D-16]

- In Serial In Parallel Out (SIPO) shift registers, the data is stored into the register serially while it is retrieved from it in parallel-fashion.
- Figure 1 shows an n-bit synchronous SIPO shift register sensitive to positive edge of the clock pulse.
- The data word which is to be stored (Data in) is fed serially at the input of the first flip-flop (D_{1} of $F F_{1}$).
- It is also seen that the inputs of all other flip-flops (except the first flip-flop FF_{1}) are driven by the outputs of the preceding ones say for example, the input of FF_{2} is driven by the output of FF_{1}.
- In this kind of shift register, the data stored within the register is obtained as a parallel-output data word (Data out) at the individual output pins of the flip-flops (Q_{1} to Q_{n}).

Figure $1 \quad n$-bit Serial-In Parallel-Out Right-Shift Shift Register

- In general, the register contents are cleared by applying high on the clear pins of all the flip-flops at the initial stage. After this, the first bit, B_{1} of the input data word is fed at the D_{1} pin of F_{1}.
- This bit $\left(B_{1}\right)$ will enter into $F F_{1}$, get stored and thereby appears at its output Q_{1} on the appearance of first leading edge of the clock. Further at the second clock tick, the bit Brright-shitts and gets stored into FF_{2} while appearing at its output pin Q_{2} while a new bit, B_{2}-enters into $\mathrm{FF}{ }_{1}$.
- Similarly at each clock tick the data within the register moves towards right by a single bit while a new bit of the input word enters into the register. Meanwhile one can extract the bits stored within the register in parallel-fashion at the individual flip-flop outputs.
- Analyzing on the same grounds, one can note that the n-bit input data word is obtained as an n-bit output data word from the shift register at the rising edge of the $n^{\text {th }}$ clock pulse. This working of the shitt-register an be summarized as in Table l and the corresponding wave forms are given by Figure 2.

Tabiel Data Movement in Right-Shift SIPO Shift Register

Clock Cycle	Data in	Q_{1}	Q_{2}	\ldots	\mathbf{Q}_{n}
1	B_{1}	B_{1}	0	\ldots	0
2	B_{2}	B_{2}	B_{1}	\ldots	${ }^{\square} 0$
3	B_{3}	B_{3}	B_{2}	\ldots	${ }^{5} 0$
4	B_{4}	B_{4}	B_{3}	...	${ }^{\times} 0$
5	B_{5}	B_{5}	B_{4}	\ldots	${ }^{5} 0$
6	B_{6}	B_{8}	${ }^{\text {B }}$		${ }^{5} 0$
:	-	:		...	${ }^{2}$.
n	B_{n}	B_{n}	B_{n-1}	..	${ }^{1} B_{1}$

Output Waveform

Figure 2 Output Waveform of n-bit Right-Shift SIPO Shift Register

Logic Diagram

4-bit Parallel Data Output

7. Explain the realization of JK flip flop from T flip flop. (7) [N/D-16]

1. Truth Table for JK Flip Flop

Inputs		Outputs	
\mathbf{J}	\mathbf{K}	$\mathbf{Q}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n + 1}}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

3. Conversion Table

\mathbf{J}	\mathbf{K}	\mathbf{Q}_{n}	$\mathbf{Q}_{\mathrm{n} 11}$	\mathbf{T}
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
$\mathbf{1}$	0	0	1	1
$\mathbf{1}$	0	1	1	0
$\mathbf{1}$	1	0	1	1
$\mathbf{1}$	1	1	0	1

2. Excitation Table for T Flip Flop

Outputs		Input
$\mathbf{Q}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}+\mathbf{1}}$	\mathbf{T}
0	0	0
0	1	1
1	0	1
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

4. K-map Simplification

$$
\mathrm{T}=\mathrm{J} \overline{\mathrm{Q}}_{\mathrm{n}}+\mathrm{K} \mathrm{Q}_{\mathrm{n}}
$$

5. Circuit Design

EE8351 - DIGITAL LOGIC CIRCUITS
 UNIT - IV
 ASYNCHRONOUS SEQUENTIAL CIRCUITSAND PROGRAMMABLE LOGIC DEVICES PART - A

1. What is deadlock condition? [N/D'14]

A condition resulting when one task is waiting to access a resource that another is holding, and vice versa.
2. Draw the block diagram of PLA. [N/D'14]

3. State the difference between static - 0 and static - 1 hazard.[A/M'15]

Static-1 Hazard: the output is currently 1 and after the inputs change, the output momentarily changes
to 0 before settling on 1
Static-0 Hazard: the output is currently 0 and after the inputs change, the output momentarily changes to 1 before settling on 0
4. What is a PROM? [A/M'15], [N/D'15]

PROM- Programmable Read Only Memory is a device that contains Fixed AND and Programmable
OR functions. IT contains fuses inact giving all 1 's in the stored bits and blown fuses by applying high voltage defining 0 states.
5. Compare pulsed mode and fundamental mode asynchronous circuit.[N/D'15]

S.No.	Pulsed mode asynchronous circuit	Fundamental mode asynchronous circuit
1.	Inputs are levels.	Inputs are pulses.
2.	Memory elements are either clocked flip - flops or time delay elements.	Memory elements are clocked flip - flops
3.	More difficult to dsign.	Easy to design.

6. What are the two types of asynchronous sequential circuits? [$M / J^{\prime} 16$]

The two types of asynchronous sequential circuits are:
a) Fundamental mode circuits
b) Pulse mode circuits
7. State the difference between PROM, PLA and PAL. [$\left.M / J^{\prime} 16\right],\left[A / M^{\prime} 17\right]$

Types of PLD s	AND array	OR array
PROM	Fixed	Programmable
PLA	Programmable	Programmable
PAL	Programmable	Fixed

8. What is static hazard and dynamic hazard?[N/D'16]

- Static Hazard - Output value the same after input change

- Dynamic Hazard - Output value different after input change

9. Define races in asynchronous sequential circuits.[N/D'16]

When 2 or more binary state variables change their value in response to a change in an input variable, race condition occurs in an asynchronous sequential circuit. In case of unequal delays, a race condition may cause the state variables to change in an unpredictable manner.
10. What is a flow table? Give example. [$\left.A / M^{\prime} 17\right]$

A state transition table with its internal state being symbolised with letters.
Examples:

(a) Four states with one input

(b) Two states with two inputs and one output

PART - B

1. Explain the various types of hazards in sequential circuit design and the methods to eliminate them. Give suitable examples. (16) [$\left.N / D^{\prime} 14\right]$
Hazards in any system are obviously an un-desirable effect caused by either a deficiency in the system or external. Influences. In digital logic hazards are usually referred to in one of three ways:
a) Static Hazards
b) Dynamic Hazards
c) Function Hazards

These logic hazards are all subsets of the same problem: - When changes in the input variables do not change the output due to some form of delay caused by logic elements (NOT, AND, OR gates etc), this results in the logic not performing its function properly.

This is however a temporary problem, and the logic will finally come to the desired function. Despite the logic arriving at the correct output, it is imeritive that hazards be eliminated as they can have an effect on other systems. Imagine hazards like this in a piece of hospital equipment.

Static Hazards

Definition:- "When one input variable changes, the output changes momentarily when it shouldn't" This particular type of hazard is usually due to a NOT gate within the logic. We can see the effects of the delay in the circuit from the following flash animation.
The hazard can be dealt with in two ways:

1. Insert another (additional) delay to the circuit. This then eliminates the static hazard.
2. Eliminate the hazard by inserting more logic to counteract the effects (Note this makes assumptions that the logic will fail)

- The first case is the most used of the two options. This is because it does not make assumptions about the logic, instead the method adds redundancy to overcome the hazard.
- To solve the hazard we shall use our previous example and apply a theory that 'Huffman' discovered.
- The insertion of a redundant loop can eliminate a static hazard.

In the next example, it will also be evident that there will not be a situation where a static ' 0 ' occurs. A static ' 0 ' hazard is one which briefly goes to ' 1 ' when it should remain at ' 0 '. A static ' 1 ' hazard is the reverse of this situation, i.e. the output should remain at ' 1 ' yet under some condition it briefly changes state to '0' (something we shall see in the following example)..

Example of Static Hazards

The Static '1' Hazard.
Let us consider an imperfect circuit that suffers from a delay in the physical logic elements i.e. AND gates etc.
The simple circuit performs the function:
$\mathrm{f}=\mathrm{X} 1 . \mathrm{X} 2+\mathrm{X1}$ '. X3
and the logic diagram can be shown as follows:
At the starting diagram, it is clear that if no delays were to occur, then the circuit would function normally. However since this is not a perfect circuit, and an error occurs when the input changes from 111 to 011. i.e. When X1 changes state.

This Karnaugh Map shows the circuit. The two gates are shown by solid rings, and the hazard can be seen under the dashed ring. The theory proved by Huffman tells us that by adding a redundant loop 'X2X3' this will elimate the hazard. So the resulting logic is of the form shown in the next figure.

So our original function is now: $f=X 1 . X 2+X 1$ '. $X 3+X 2 . X 3$
It is observed that even with imperfect logic elements, this example will not show signs of hazards when X1 changes state. This theory can be applied to any logic system.

Dynamic Hazards

- Definition:- "A dynamic hazard is the possibility of an output changing more than once as a result of a single input change"
- Dynamic hazards often occur in larger logic circuits where there are different routes to the output (from the input). If each route has a different delay, then it quickly becomes clear that there is the potential for changing output values that differ from the required / expected output. e.g. A logic circuit is meant to change output state from ' 1 ' to ' 0 ', but instead changes from ' 1 ' to ' 0 ' then ' 1 ' and finally rests at the correct value ' 0 '. This is a dynamic hazard.
- Dynamic hazards take a more complex method to resolve. The below example shows how a dynamic hazard can occur but now how to solve it.

Let us take the circuit above, and see the proper logic output with the logic values above

Let artificial delays be introduced in some of the elements. Marked D1, D2 and D3.

- Consider D1 < D2 < D3.
i.e. The delay in D 1 is less than the delay in D 2 , and the delay in D 3 is greater than the delay in D2.
- Say that input B changes from 0 to 1 . Working with one delay at a time the output can be determined.
- There could be a different output value for every different delay.
- The NOT gate shown changes from 1 to 0 . Remembering that D1 is the shortest of the three delays, the AND gate shown will also change from 1 to 0 .
- Because the other delays (D2, D3) are longer than D1, and because the other gates have no delay (or neglible delay), our output changes from 1 to 0 . (The first effect of the hazard).
- The next delay to occur is D2. So the OR gate shown implements the change ($0 O R 1=1$). Now the AND gate has only seen the change in one of its inputs due to the delay D3 being longer than the other delays. So momentarily, both inputs are logic 1 which means the AND gates output goes to logic 1 hence changing the output of the entire circuit ($1 \mathrm{OR} 0=1$).

- The next delay to occur is D3. The OR gate reacts slower than D1 to the change in input, but now the OR gate implements the change ($0 O R 0=0$). There is a knock on effect to the AND gate (as 0 AND $1=0$) and then again to the output of the entire circuit. The output rests at 0 .
- This is the final stage as there are no more delays in the circuit and therefore no more changes of state due to input B changing.
D3(1 OR $0=1$).
- The circuit finally rests at the correct logical value for an ideal circuit. However the output has changed values twice before coming to the correct result on the third change. If this was an ideal circuit then the output should have changed only once.

2. Describe with reasons the effect of races in asynchronous sequential circuit design. Explain its type with illustrations. Show the method of race - free state assignments with examples. (16) [$N / D^{\prime} 14$]

- A race condition or race hazard is the behaviour of an electronic, software, or other system where the output is dependent on the sequence or timing of other uncontrollable events.
- A race condition may occur in a system of logic gates where inputs vary. If a given output depends on the state of the inputs it may only be defined for steady-state signals. As the inputs change state a small delay will occur before the output changes due to the physical nature of the electronic system. The output may, for a brief period, change to an unwanted state before settling back to the designed state. Certain systems can tolerate such glitches but if this output functions as a clock signal for further systems that contain memory, for example, the system can rapidly depart from its designed behaviour..

Types:

* Critical and non-critical forms

a) A critical race condition occurs when the order in which internal variables are changed determines the eventual state that the state machine will end up in.
b) A non-critical race condition occurs when the order in which internal variables are changed does not determine the eventual state that the state machine will end up in.

* Static, dynamic, and essential forms

a) A static race condition occurs when a signal and its complement are combined together.
b) A dynamic race condition occurs when it results in multiple transitions when only one is intended. They are due to interaction between gates. It can be eliminated by using no more than two levels of gating.
c) An essential race condition occurs when an input has two transitions in less than the total feedback propagation time. Sometimes they are cured using inductive delay line elements to effectively increase the time duration of an input signal.
Design techniques such as Karnaugh maps encourage designers to recognize and eliminate race conditions before they cause problems. Often logic redundancy can be added to eliminate some kinds of races.

RACE -FREE STATE ASSIGNMENT

- Once a reduced flow table has been derived for an asynchronous sequential circuit, the next step in the design is to assign binary variables to each stable state. This assignment results in the transformation of the flow table into its equivalent transition table.
- The primary objective in choosing a proper binary state assignment is the prevention of critical races. Critical races can be avoided by making a binary state assignment in such a way that only one variable changes at any given time when a state transition occurs in the flow table.

Fig: Three row flow table example

- To avoid critical races, we must find a binary state assignment such that only one binary variable changes during each state transition.
- An attempt to find such an assignment is shown in the transition diagram.
- State a is assigned binary 00 , and state c is assigned binary 11.
- This assignment will ca use a critical race during the transition from a to c because there are two changes in the binary state variables and the transition from a to c may occur directly or pass through b.
- Note that the transition from c to a also ca uses a race condition, but it is noncritical because the transition does not pass through other states.
- A race-free assignment can be obtained if we add an extra row to the flow table. The use of a fourth row does not increase the number of binary state variables, but it allows the formation of cycles between two stable states.
- The transition table corresponding to the flow table with the indicated binary state assignment is shown in Fig. The two dashes in row d represent unspecified states that can be considered don'tcare conditions. However, care must be taken not to assign 10 to these squares, in order to avoid the possibility of an unwanted stable state being established in the fourth row.

Four-Row Flow-Table Example

A flow table with four rows requires a minimum of two state variables. Although a race-free assignment is sometimes possible with only two binary state variables, in many cases the requirement of extra rows to avoid critical races will dictate the use of three binary state variables

Fig: Four-row flow-table example

- The following figure shows a state assignment map that is suitable for any four-row flow table. States a, b, c and d are the original states and e, f and g are extra states.
- The transition from a to d must be directed through the extra state e to produce a cycle so that only one binary variable changes at a time.
- Similarly, the transition from c to a is directed through g and the transition from d to c goes through f. By using the assignment given by the map, the four-row table can be expanded to a seven-row table that is free of critical races.

Fig: State assignment to modified flow table
Note that although the flow table has seven rows there are only four stable states. The uncircled states in the three extra rows are there merely to provide a race-free transition between the stable states.

Multiple-Row Method

- The method for making race-free stale assignments by adding extra rows in the flow table is referred to as the shared-row method.
- A second method called the multiple-row method is not as efficient, but is easier to apply.
- In multiple- row assignment each state in the original row table is replaced by two or more combinations of state variables.

Fig: Multiple row assignment
Fig: Multiple row assignment

- There are two binary state variables for each stable state, each variable being the logical complement of the other. For example, the original state a is replaced with two equivalent states $\mathrm{a} 1=000$ and $\mathrm{a} 2=111$.
- The output values, not shown here must be the same in a1 and a2. Note that a1 is adjacent to $\mathrm{b} 1, \mathrm{c} 2$ and d 1 , and a 2 is adjacent to $\mathrm{c} 1, \mathrm{~b} 2$ and d 2 , and similarly each state is adjacent to three states with different letter designations.
- The expanded table is formed by replacing each row of the original table with two rows. In the multiple-row assignment, the change from one stable state 10 another will always cause a change of only one binary state variable.
- Each stable stale has two binary assignments with exactly the same output.

3. Design an asynchronous sequential circuit that has two inputs X_{2} and X_{1} and one output Z. When $X_{1}=0$, the output Z is 0 . The first change in X_{2} that occurs while X_{1} is 1 will cause output Z to be 1. The output Z will remain 1 until X_{1} returns to 0 .(16) [A/M'15]

State diagram

Primitive flow table constructed from state diagram

Present state	Next stata .Output Z for $\mathrm{X}_{2} \mathrm{X}_{1}$ inputs			
	00	01	11	10
A	(A) 0	B .-	- .-	C.-
B	A .-	(B) 0	D.-	- ,-
C	A.-	-.,	E.-	(C). 0
D	-.-	F .-	(D) 1	C .-
E	-.,	F .-	(E) 0	C.-
F	A.-	(F) 1	D .-	- .-

Flow table with state assignment

Present state$F_{2} F_{1}$	Next state, Output Z for $X_{2} X_{1}$ Inputs			
	00	01	11	10
$S_{0} \rightarrow 0$	(S0) 0	($\mathrm{S}_{0} .0$	S_{2}.-	S_{1}.-
$\mathrm{S}_{1} \rightarrow 01$	S_{0}.-	$\mathrm{S}_{3},-$	($\mathrm{s}_{1} .0$	(s) 0
$\mathrm{S}_{2} \rightarrow 10$	s_{0}.-	(S_{2}, 1	($\mathrm{S}_{2} .1$	$\left.\mathrm{S}_{3}\right)^{-}$
$\mathrm{s}_{3} \rightarrow-1$.-	$\mathrm{S}_{2} \mathrm{~S}_{1}-$	- .-	$\left(s_{1}\right)_{\text {. }}$ -

Flow table converted into a transition table

Present state	Noxt state, Output Z for $X_{2} X_{1}$ Inputs				
	F_{1}	00	01	11	10
0	0	00,0	00,0	$10,-$	$01,-$
0	1	$00,-$	$11,-$	01,0	01,0
1	0	$00,-$	10,1	10,1	$11,-$
1	1	,--	$10,-$.--	$01,-$

K-map simplification

Logic diagram

4. Show how to program the fusible links to get a 4 bit Gray code from the binary inputs using PLA and PAL and compare the design requirements with PROM. (16) [N/D'15]
Gray code generator using PROM

PROM based binary to gray code converter

Figure 5.25 PROM realization of the binary-to-gray code converter.

PAL based binary to gray code converter

Binary to gray code converter Boolean expression are concluded as

$$
Y_{3}=A
$$

$Y_{2}=A \bar{B}+\bar{A} B$
$Y_{1}=B \bar{C}+\bar{B} C$
$Y_{0}=C \bar{D}+\bar{C} D$
It is noted that $4 \times 7 \times 4$ PLA is needed to implement gray code converter and same for PAL also.
Total number of AND OR gates links are
96 - PLA
56 - PAL
64 - PROM

5. What are static - 0 and static -1 hazard? Explain the removal of hazards using hazard covers in k map. (8) [$\mathrm{M} / \mathrm{J}^{\prime} 16$]

Static Hazards

A static hazard occurs when a single input variable change should cause no change in the output of a combinational logic circuit, but a short glitch of the incorrect logic level occurs.
The problem occurs because real physical implementations of logic functions have finite propagation times which are variable, and if two inputs to a gate should theoretically change simultaneously, one will actually change before the other.
If more than one input variable changes "simultaneously" there is no way to guarantee that such glitches will not occur.

Types of Static Hazards
Static - 1 hazard :- A static 1 hazard may occur in a two level sum of products (SOP)
implementation.
Static - 0 hazard :- A static 0 hazard may occur in a two level product of sums
(POS)implementation.
Example of Static Hazards
The Static '1' Hazard.
Let us consider an imperfect circuit that suffers from a delay in the physical logic elements i.e. AND gates etc.
The simple circuit performs the function:
$\mathrm{f}=\mathrm{X} 1 . \mathrm{X} 2+\mathrm{X} 1^{1} . \mathrm{X} 3$
and the logic diagram can be shown as follows:
At the starting diagram, it is clear that if no delays were to occur, then the circuit would function normally. However since this is not a perfect circuit, and an error occurs when the input changes from 111 to 011. i.e. When X1 changes state.

This Karnaugh Map shows the circuit. The two gates are shown by solid rings, and the hazard can be seen under the dashed ring. The theory proved by Huffman tells us that by adding a redundant loop 'X2X3' this will elimate the hazard. So the resulting logic is of the form shown in the next figure.

Hazard Eliminated
So our original function is now: $\mathrm{f}=\mathrm{X} 1 . \mathrm{X} 2+\mathrm{X} 1$ '. $\mathrm{X} 3+\mathrm{X} 2 . \mathrm{X} 3$

It is observed that even with imperfect logic elements, this example will not show signs of hazards when X1 changes state. This theory can be applied to any logic system.
6. Explain cycles and races in asynchronous sequential circuits. (8) [$M / J^{\prime} 16$] Races in asynchronous sequential circuits

* Race condition: \square two or more binary state variables will change value when one input variable changes \square Cannot predict state sequence if unequal delay is encountered \square
* Non-critical race: \square The final stable state does not depend on the change order of state variables \rrbracket Critical race: \square The change order of state variables will result in different stable states.

(a) Possible transitions:
$00 \rightarrow 11$
$00 \rightarrow 01$
$00 \rightarrow 10$

$$
\begin{aligned}
& 00 \rightarrow 11 \\
& 00 \rightarrow 01 \rightarrow 11 \\
& 00 \rightarrow 10
\end{aligned}
$$

(b) Possible transitions:

(a) Possible transitions:

$$
\begin{aligned}
& 00 \rightarrow 11 \\
& 00 \rightarrow 01 \rightarrow 11 \\
& 00 \rightarrow 10 \rightarrow 11
\end{aligned}
$$

(b) Possible transitions:

Fig. 9-7 Examples of Critical Races
Cycles in asynchronous sequential circuits

* A cycle occurs when an asynchronous circuit makes a transition through a series of unstable states.
* When a state assignment is made so that it introduces cycles.
* Care must be taken so that each cycle terminates on a stable state.
* If a cycle does not contain a stable state, the circuit will go from one unstable state to another, until the inputs are changed.

(a) State transition: $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$

(b) State transition: $00 \rightarrow 01 \rightarrow 11$

(c) Unstable
$\longrightarrow 01 \rightarrow 11 \rightarrow 10-$

Fig: Examples of cycles

EE8351 - DIGITAL LOGIC CIRCUITS
 UNIT - V
 VHDL
 PART - A

1. Write a VHDL code for 2×1 MUX. [N/D'14], [M/J'16], [A/M'17]
library ieee;
use ieee.std_logic_1164.all;
entity mux2_1 is
port (a,b,sel:instd_logic; c: out std_logic);
end mux2_1;
architecture muxarch of mux2_1 is
begin
process (a,b,sel)
begin
if $s==^{\prime} 0$ then $c<=a$;else $s={ }^{\prime} 1$ ' then $c<=b$; end if;
end process;
end muxarch;
2. State the advantage of package declaration over component declaration. [$N / D^{\prime} 14$]

Package declaration is used to declare components, types, constants, functions and so on. Declared Packages will be shared by many design units.
Component declaration declares the name of the entity and interface of a component which is used by the design unit. Declared Component will be used by the corresponding design unit.
3. What is a package in VHDL?[A/M'15]

A VHDL package contains subprograms, constant definitions, and/or type definitions to be used throughout one or more design units. Each package comprises a "declaration section", in which the available (i.e. exportable) subprograms, constants, and types are declared, and a "package body", in which the subprogram implementations are defined, along with any internally-used constants and types.
4. Write the behavioural modelling code for a D flip flop.[A/M'15], [N/D'15], [N/D'16]

Library ieee;
use ieee.std_logic_1164.all;
entity dff is
port (D, clk, rst:instd_logic; Q : out std_logic);
end dff;
architecture behave of dff is
begin
process (rst,clk) Begin
if rst='0' then $Q<={ }^{\prime} 0$ '; elseclock'event and clk='1' then $Q<=D$;
end If;
end process;
end behave;
5. List out the operators present in VHDL.[N/D'15]

Logical operators, Arithmetic operators, Relational operators and shift operators.
6. What is data flow modelling in VHDL? Give its basic mechanism.[M/J'16] A dataflow style architecture models the hardware in terms of the movement of data over continuous time between combinational logic components such as adders, decoders and primitive logic gates.
Basic Mechanism:
entity entity_name is
port();
architecture dataflow of entity_name is
begin
end dataflow;
7. Write the VHDL code for a logic gate which gives high output only when both the inputs are high.
[$\mathrm{N} / \mathrm{D}^{\prime} 16$]
entity andgate is
port(A:in std_logic;
B:in std_logic;
Y: in std_logic);
end andgate
8. Give the syntax for package declaration and package body in VHDL.[A/M'17]
package package_name is
\{package_declarative_item\}
end [package_name];
package body package_name is
\{package_declarative_item\}
end [package_name];
9. What is the purpose of VHDL programming? Or what is the need for VHDL? [M/ J-13]

Very high speed integrated circuit hardware description language. It is a language for describing a hardware, which has to be readable for machines and humans at the same time \& it structured and comprehensible code, so that the source code can serve as a kind of specification document. Thus it is used for studying digital logic circuits and testing its functions.

PART - B

1. Write VHDL coding for 4×1 multiplexer. (7)[N/D'16]

4: 1 MUX
Truth Table:

Input	S1	S0	Ouptut
IO	0	0	10
I1	0	1	I1
I2	1	0	I2
I3	1	1	I3

Logic Diagram:

Program:

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
#entity mux 4x1 is
    Port ( din : in STD_LOGIC_VECTOR (3 downto 0);
        en : in STD_LOGIC;
            sel: in std_logic_vector(1 downto 0);
        dout : out STD_LOGIC);
    end mux 4\times1;
    \emptysetarchitecture mux 4\times1_arch of mux 4\times1 is
    signal iy:std_logic;
begin
        with sel select
        iy<= din(0) when "00",
            din(1) when "01",
            din(2) when "10",
            din(3) when "11",
            '0' when others;
        dout<=iy when en='1' else '0';
    end mux4\times1_arch;
```

2. Write the VHDL code to realise a full adder using (16)[A/M'15]
3. Write a VHDL program for full adder using structural modelling. (8) [N/D'15]
4. Explain in detail the concept of structural modelling in VHDL with an example of full adder. (13) [$\mathrm{N} / \mathrm{D}^{\prime} 16$]
5. Explain the concept of behavioural modelling and structural modelling in VHDL. Take the example of full adder design for both and write the coding.(8) [$N / D^{\prime} 14$]

Truth Table:

A	B	C	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Program

a) Behavioural modelling
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity fab is
Port (a : in std_logic;
b : in std_logic;
c : in std_logic;
s : out std_logic;
cr : out std_logic);
end fab;
architecture Behavioral of fab is
begin
process(a,b,c)
begin
if($\mathrm{a}=\mathrm{a}^{\prime} \mathrm{O}^{\prime}$ and $\mathrm{b}==^{\prime} 0$ ' and $\mathrm{c}={ }^{\prime} 0^{\prime}$ 'then
s<='0';
cr<='0';
elsif($a={ }^{\prime} 0$ and $b=' 0$ and $c=11$)then
s<='1';
cr<='0';
elsif($a=10$ ' and $b=' 1$ ' and $c=' 0 ')$ then
s<='1';
cr<='0';
elsif($a=10$ ' and $b=' 1$ ' and $c=11$ 'then
s<='0';
cr<='1';
elsif($a=11$ and $b=' 0$ and $c={ }^{\prime} 0$ ')then
s<='1';
cr<='0';
elsif($a=11$ and $b={ }^{\prime} 0$ ' and $c=11$)then
s<='0';
cr<='1';

```
elsif( a='1' and b='1' and c='0')then
s<='0';
cr<='1';
else
s<='1';
cr<='1';
end if;
end process;
end Behavioral;
```

b) Structural modelling
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity full_adder is
Port (a,b,cin : in STD_LOGIC;
sum,cout : out STD_LOGIC);
end full_adder;
architecture fa_str of full_adder is
component xor2
port(d1,d2:in std_logic;
dz:out std_logic);
end component;
component or2
port(n1,n2:std_logic;
z:out std_logic);
end component;
component and2
port(a1,a2:in std_logic;
u:out std_logic);
end component;
signal s1,s2,s3,s4,s5:std_logic;
begin
x1:xor2 port map(a,b,s1);
x2:xor2 port map(s1,cin,sum);
r1:and2 port map(a,b,s2);
r2:and2 port map(b,cin,s3);
r3:and2 port map(a,cin,s4);
01:or2 port map(s2,s3,s5);
02:or2 port map(s4,s5,cout);
end fa_str;
6. Write a VHDL program for 1 to 4 Demux using dataflow modelling. (8) [N/D'15] Truth Table:

Logic Diagram:

Input	Select Lines	Output Lines				
I	$\mathrm{S}_{1} \mathrm{~S}_{0}$			$\mathrm{D}_{0} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3}$		
I	0	0	1	0	0	0
I	0	1	0	1	0	0
I	1	0	0	0	1	0
I	1	1	0	0	0	1

Program:

library IEEE;
use IEEE.std_logic_1164.all;
entity bejoy_1x4 is
port(s1,s2,data_in : in std_logic;
d1,d2,d3,d4 : out std_logic);
end bejoy_1x4;
architecture arc of bejoy_1x4 is
component dmux
port(sx1,sx2,d : in std_logic;
z1,z2 : out std_logic);
end component;
begin
dmux1 : dmux port map(s1,s2,data_in,d1,d2);
dmux2 : dmux port map(not s1,s2,data_in,d3,d4);
end arc;
library ieee;
use ieee.std_logic_1164.all;
entity dmux is
port(sx1,sx2,d :in std_logic;
z1,z2: out std_logic);
end dmux;
architecture arc of dmux is
begin
z1 <= d and (not sx1) and (not sx2);
$\mathrm{z2}<=\mathrm{d}$ and (not sx1) and sx2;
end arc;
7. Explain in detail the RTL design procedure. (16) [$N / D^{\prime} 15$]

1. Capture a HLSM

- Create a HLSM diagram to describe the system's intended behavior.

2. Convert to a Circuit
a) Create a datapath

- Create a datapath to carry out the data operations of the HLSM.
- Use components from a library
- Include registered outputs.
b) Connect the datapath to a controller
- Connect all control signals to the circuit
c) Derive the controller's FSM.
- Convert the HLSM to a FSM for the controller
- Replace data operations with setting and reading of control signals to and from the datapath.
- Create a circuit for the controller from the FSM

Example:

Design a system to control the speed of the conveyor belt on a treadmill.

- Speed is a 4 bit value that is controlled by two buttons
- Up button increases speed by one
- Down button decreases speed by one
- If both are pushed, no change in speed occurs. Speed must initialize to zero upon startup.

Inputs: up (bit). ©own (bit)
Outputs: speed (4 bit reg) Intemal Storage: n / a

Convert to a Circuit

1. Create a data path

- Create a data path to carry out the data operations of the HLSM.
- Use components from a library
- Include registered outputs.

2. Convert to a Circuit

- Connect the datapath to a controller
- Connect all control signals to the circuit

- Convert to a Circuit
- Derive the controller's FSM.
- Convert the HLSM to a FSM for the controller
- Replace data operations with setting and reading of control signals to and from the datapath.
- Create a circuit for the controller from the FSM

2. Convert to a Circuit
3. Derive the controller's

FSM.

- Convert the HLSM to a FSM for the controller
(1) Replace data
operations with setting and reading of control signals to and from the datapath.
- Create a circuit for the controtler from the FSM

8. Explain the various operators supported by VHDL. (8) [$\mathrm{M} / \mathrm{J}^{\prime} 16$]
9. Write short notes on built - in operators used in VHDL programming. (6) [N/D'16]

Logical Operators

VHDL Operator	Operation	Operand Type	Result Type
not and or nand nor xor xnor	logical not logical and logical or logical nand logical nor logical xor logical xnor	boolean, bit[_vector], std_logic[_vector] boolean, bit[_vector], std_logic[_vector] boolean, bit[_vector], std_logic[_vector] boolean, bit[_vector], std_logic[_vector] boolean, bit[_vector], std_logic[vector] boolean, bit[_vector], std_logic[vector] boolean, bit[_vector], std_logic[_vector]	same type same type

Examples:
carry <= a and b or a and cor b and c;
zout <= (not a) and b;
Relational Operators

VHDL Operator	Operation	Operand Type		Result Type
		Left	Right	
$=$	equality	any type	any type	boolean
$1=$	inequality	any type	any type	boolean
$<$	less than	any scalar type	any scalar type	boolean
<	less than or	any type escalar	any scalar type	boolean
	equal to			
$>$	greater than	any type escalar	any scalar type	boolean
=>	greater than			
	or equal to	any type escalar	any scalar type	boolean

Example:

$$
\text { data <= }(a=0) \text { and }(b=1) \text {; }
$$

Arithmetic Operators

- The circuit used for an arithmetic operator will be entirely combinational logic
- Arithmetic operators are implemented in two's complement
- The negation operator is implemented as a two's complement negation. Two's complement negation is performed by subtracting the input from zero
- The add operator is usually implemented as a ripple-carry adder. The same circuit is used for either signed or unsigned arithmetic.
- The subtractor operator is implemented as a ripple-borrow subtractor

VHDL Mathematical Operators

VHDL Operator	Operation	Operand Type		Result Type
		Left	Right	
Miscellaneous * abs	exponential absolute value	any integer any numeric tpye	integer any numeric type	same as left same numeric type
Arithmetic l \bmod rem	multiplication division modulus remainder	any numeric any numeric any numeric any numeric	any numeric any numeric any numeric any numeric	Same numeric Same numeric Same numeric Same numeric

VHDL Shift Operators

VHDL Operator	Operation	Operand Type		Result Type
		Left	Right	
Shift				
sll	logical shift left	one dimensional	integer	same as left
		array of bit or std_logic		
srl	logical shift right	one dimensional	integer	same as left
		array of bit or std_logic		
sla	arithmetic shift left	one dimensional	integer	same as left
		array of bit or std_logic		
sra	arithmetic shift right	one dimensional	integer	same as left
		array of bit or std_logic		
rol	logical rotate left	one dimensional	integer	same as left
		array of bit or std_logic		
ror	logical rotate right	one dimensional	integer	same as left
		array of bit or std_logic		Act Got

