Visit : www.Easyengineering.net

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
EE8351 DIGITAL LOGIC
CIRCUITS

UNIT =1

NUMBER SYSTEM AND DIGITAL LOGIC
FAMILIES Part - A

1. Determine (377),, in octal and Hexa-decimal equivalent.[N/D’14]

377 16 |37
88 47 - 4 163 - a
5 1 1 9 !
7! 7

(3877)10=(571)8

(377)10=(179)16

2. Compare the totem — pole output with open collector output. [N/D’14]

S.No. | Totem pole Open Collector

1. Output stage consists of pull-up Output stage consists of only pull-
transistor, diode resistor and pull- | down transistor.
down transistor.

2. External pull-up resistor is not External pull-up resistor is required
required for proper operation of gates.

3. Operating speed is high. Operating speed is low.

4. Output of two gates cannot be Output of two gates can be tied
tied together. together using wired AND

technique.
3. Convert : [A/M’'15]

a) (475. 25) to its femm I equivlalent.
—4x8 +7x8~+5x8 +2x8' +5x8"
=256+56+5+0.25+0.078125
=(317.32814)10

b) (549.34)1 to its Qinary e uivalent,
sx162+4x16 140316041 1x16 L+ 4x16-2

=261+64+9+0.6875+0.01562
=(334.703)10

4. Define propagation delay. [A/M’15]
Propagation delay is the average transition delay time for the signal to
propagate from
input to output then the signals change in value. It is expressed in ns.

5. What is unit distance code? Give an example. [N/D’15]
Unit distance code is a non- weighted code in which next increment or
decrement causes the bit transition only at one place. Ex: Gray code.

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

6. Define Fan-out. [N/D’15]

Fan- Out is defined as the maximum number of inputs of several gates that
can be

driven by the output of logic gate maintaining its output levels within the
specified

limits.

7. Construct OR gate and AND gate using NAND gate. [N/D’16]
A o— i
e~ o
2-input AND Gate ﬁ_o Q
Do

2-input OR Gate

8. Convert the following Excess-3 numbers into decimal numbers [N/D’16]
a) 1011
b) 1001 0011 0111

a) Binary equivalent of Excess-3 1011 is 1000
Decimal equivalent of 1000 - (8)4,

b) Binary equivalent of Excess-3 1001 0011 0111 is 0110 0000 0100
Decimal equivalent of 1000 - (604),,

9. Reduce a(b + b'c) + ab’' [AIM'17]

a(b+b'c)+ab’ =ab+ab'c+ ab’
=a(b+b')+ab'c=a+ab'c

10. Convert 143, into binary and binary coded decimal equivalent. [A/M’17]

Binary coded decimal equivalent - 143,, is 0001 0100 0011

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

™G TPL LOGIC C\RcUTS

UNIT -1

NUMBER SYSTEM AND DIGITAL LOGIC FAMILIES

Part — B

1. Explain Hamming code with an example. State its advantages over parity codes. (8)

[N/D’14]

» Hamming code is a set of error-correction code s that can be used to detect and
correct bit errors that can occur when computer data is moved or stored.

e Hamming codes can detect up to two-bit errors or correct one-bit errors without
detection of uncorrected errors.

e Hamming codes are perfect codes for achieving the highest possible rate for codes
with their block length and minimum distance called as min Hamming distance.

e A Hamming can be applied to the data unit of any length and uses the relationship
between data and redundancy bits.

e For example the seven bit ASCII code requires 4 redundancy bits that can be added to
the end of the data or between the original data bits.

11 10

9

8

7 6 S5 4 3 2

d|d

r

dld(d|r|d|(r|r

[Redundancy bits J

e In Hamming code, the position of r bits is as follows:
o 1, — bits 1,3,5,7,9,11
o 1 — bits 2.3.6.7,10,11
o 13 — bits 4,5,6,7

& = bits 8,9,10,11
» The position of ry is chosen for the values which has 1 in the right most position.

» The position of r; is chosen for the values which has 1 in the second last position.
» The position of 7y is chosen for the values which has 1 in the third last position.
» The position of 7 is chosen for the values which has 1 in the fourth last position

and so on.

r1 will take care
of these bits

1011 1001 0111 0101 0011 0001
11 9 7 5 3 1
dla|d]re|d|d|d]rgjd]ra]n

10111010 0110010

will take care
of these bits

01110110
11 10 7 6 3 2
d[al|d|rg|d]|d d|rg|d|r2]|7]

Visit

: www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

rq will take care
of these bits

011101100101 0100
7 6 5 4

[d]dld rsldl(l|d]r4ld]r2]r]]

of these bits

—M

101110101001 1000
11 10 9 8

|‘1ld|d rs dld‘d r4g | d [ra2 | r1 | Example of Hamming

[rs will take care]

Code:
Data: 1001101
Daa| 1.1 0 | 0 11 1]0 1

) | [| I I]

Addingrp | 1 [0 | O 1]11(0 | 1
[I 1 | | i

Addingrm |1 |0 |0} 1|10} |1] 0 |1
Addingrg |1 (OO | |1]J1|[O0O}O |10]| L

Addingrg[1 JOJo] 1t J1J1JoJoJ1]o]i1

Code: 10011100101

Advantages of Hamming code over parity codes
> The advantage of Hamming code over a simple parity system that it can correct a
single bit error and can also detect 2-bit errors.
» Whereas a parity system with one parity bit can detect single bit errors but cannot
correct them.

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

2. Design TTL logic circuit for a 3-input NAND gate. (8) [N/D’14]

Vee 0—
RD %1.&1‘ RJ}"’“
R1 < 4k 04
Q2

o} -
A ouT
8
» Q3
Re < 1k
GND
3 input NAND]gate

A |B|Cc|AB.C| AB.C

0 0|0 0 1

0 |01 0 1

0 110 0 1

1111 0 1

1 0|0 0 1

1 01 0 1

1 1 0 0 1

1 1 1 1 0

> If any input is low, the corresponding base-emitter junction becomes forward-

biased and the transistor conducts.
%> The other characteristics of the circuit and its transfer characteristic are identical to

those of the inverter circuit.

3. Draw the MOS logic circuit for NOT gate and explain its operation. (8) [N/D’14]

vdd - |
—4[|

=il

Vss

e When a low voltage (0 V) is applied at the input, the top transistor (P-type) is

conducting (switch closed) while the bottom transistor behaves like an open circuit.

e Therefore, the supply voltage (5 V) appears at the output.

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

e Conversely, when a high voltage (5 V) is applied at the input, the bottom transistor
(N -tylpe) is conducting (switch closed) while the top transistor behaves like an open
circuit.

e Hence, the output voltage is low (0 V).

e The function of this gate can be summarized by the following table:

Input | Output

High (logicl) | Low (logic 0)

Low (logic 0) | High (logicl)

e The output is the opposite of the input — this gate inverts the input.
e One of the transistors will be an open circuit and no current flows from the supply
voltage 0 ground.

4. With circuit schematic, explain the operation of a two input TTL NAND gate with totem-
pole output. (10) [A/M’15]
5. With circuit schematic explain the working of 2 two — input TTL NAND gate. (7)
[AM’17]
e Lhe circuit structure is identical to TTL inverter circuit except for the multiple emitter
input transistor.
e This is used to implement a diode switching structure in active transistor form using
parallel junction diffusions for several emitters.

R, P

Fig. 3.1 Multiple Input Emitter Structure of TTL

e If any input is low, the corresponding base-emitter junction becomes forward-biased
and the transistor conducts.

e The other characteristics of the circuit and its transfer characteristic are identical to
those of the inverter circuit.

Logical Operation
e The direction of conduction of T1 can be in the forward or reverse mode so this should

also be noted in the table.
o It can be seen:from the table that the output goes LO only when both inputs are HI
which verifies the NAND function.

l IN1 IN2 T1 Tz Tg T4 D Output l
| LO

1.O ON OFF OFF ON ON HI |
LO HI ON OFF OFF ON ON HI |
HI LO ON OFF OFF ON ON HI |
HI HI ON ON ON OFF OFF LO |

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

vfl‘

Input | ¢
Input 2 o

v (no load)

Fig. 3.2 Circuit Diagram of a Standard 2-input TTL NAND Gate

6. Compare totem pole and open collector outputs. (6) [A/M’1 5]
7. Compare Totem pole and open collector outputs. (6) [A/M’17]

NAND gate with Totem pole output
= Below is the circuit of a totem-pole NAND gate,

which has got three stages
= Inpul Stage

|
| ovee
» Phase Splitter Stage Ry | £ Rz Ra
w! Tiek T
s QOutpul Stage [|
: ._1‘_ Totem pole
WH/ IO:' t;ulpul stage
- | 1
R | 2] | Y
Ingat 8 | |
I o

Standard TTL NAND gate 0;X%XD;

o

multiple emitter inpl'llphase s"plillcr
stage stage

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

NAND gate with collector output

Output
- Qs
R, g

S.No. | Totem pole Open Collector

L Output stage consists of pull-up Output stage consists of only pull-down
transistor, diode resistor and pull- transistor.
down transistor.

2 External pull-up resistor is not External pull-up resistor is required for
required proper operation of gates.

3. Operating speed is high. Operating speed is low.

4. Output of two gates cannot be tied Output of two gates can be tied together
together. using wired AND technique.

8. Draw the CMOS logic circuit for NOR gate and explain its operation. (8) [N/D’15]

e The cireuit has two inputs and one output.

e Whenever at least one of the inputs is high, the corresponding N-type transistor
will be closed while the P-type transistor will be open.
Consequently, the output voltage will be low.

e Conversely, if both inputs are low, then both P-type transistors at the top will be
closed circuits and the N-type transistors will be open.

Hence, the output voltage is high.

‘I'he tunction of this gate can be summarized by the following table:

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Input (A) .- | Input (B) Output
Low Low High
Low High Low
High Low Low
High High Low

If log_ical 1's are associated with high voltages then the
function of this gate is called NOR for negated OR.

There is never a conducting path from the supply voltage to

ground.

9. Explain with an aid of circuit diagram the operation of 2 input CMOS NAND gate and list
out its advantages over other logic families. (10) [N/D’16]

Advantages of CMOS

The circuit has two inputs and one output.

Whenever at least one of the inputs is low, the corresponding P-type transistor will
be conducting while the N-type transistor will be closed.
Consequently, the output voltage will be high.

Conversely. if both inputs are high, then both P-type
transistors at the top will be open circuits and both N-type

transistors will be conducting.

Hence, the output voltage is low.

The function of this gate can be summarized by the

following table:

' Input (A) Input (B) Output

Low Low High
Low High High
High Low High
High High Low

If logical 1’s ar

called NAND for negated AND.

There is never a conducting path

a) Low power consumption
b) High fan out
c) Temperature stability
d) Noise immunity

over other logic families

e associated with high voltages then the function of this gate is

from the supply voltage to ground.

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

10. Briefly discuss weighted Binary code. (4) [N/D’15]
Weighted Codes:

e The main characteristic of a weighted code is, each binary bit is assigned by a
“weight” and values depend on the position of the binary bit.

e The sum of the weights of these binary bits, whose value is 1 is equal to the decimal
digit which they represent.

e In other words, if wl, w2, w3 and w4 are the weights of the binary digits, and x1, x2,
x3 and x4 are the corresponding bit values, then the decimal digit N=w4x4 +
w3x3+w2x2+wlx1 is represented by the binary sequence x4x3x2x1.

e A sequence of binary bits which represents a decimal digit is called a “code word”.

e Thus x4x3x2x1 is a code word of N.

e Example of these codes is: BCD, 8421, 6421, 4221, 5211, 3321 etc.

e Weighted codes are used in:

a) Data manipulation during arithmetic operation.
b) For input/output operations in digital circuits.
¢) To represent the decimal digits in calculators, volt meters etc.

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit: ww Easyenginesring.net
Encoda i b?r_c:mj word o1l v ven e
bt ecoen]smta Bomming coda,

@) [alme]

Given h hiesly wond
by, b, b, b

| o

L o U |
The -bib Hamming (1,6 code woord
QT W&ﬂ%“ O A e

’e\l 2 Y G b$ L_-),L l:) bo cz«_wo{

4-bip binosy ramben

(R :bz,@bl@()— ‘@\(_Bl-'
oL

,& £ BLIER]
b b, @, @ 0@
g B oa

'ﬁezbz“o

L-\b‘:lot.'ll

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Perf&n'fm “Tha *ﬁﬁunw*ﬂa G—ELcU'HcM U_M\»S YD)
C:Lu\.A Excewy ~ 32 c_cg»&uﬁﬂ"\
(205 + 63 @) [a/m's]

RCH AddiRon

R 05 0D | O o i R O o |
5 b9 o1 O s N A O) t 0O |
e (@)
7 1 & Of 5§ 3 o1l o Li_l,__a(i'“???

\L o |)0

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

20 B —wm &Y O] oo+ | | © oo
56 Q@ — | 6 6o | oo | { 1 2o
[1 O l[@Ol]oIOO
oL
@)
| | &1 T | g
- iy ‘QOH___ Correchk
e ——— o= 00
t1ot L ol 4
ODI] @LO\' '\l"
3
Joie LO1I°
\'/Y_,_) \,«-«—\/'__J V—_:(:]_‘_J______.>G—:PCC_Q/V>’"3
[O (= C,Q.D(.l_.
Moo - % Lo dle
Qinany Bpivel? b &
,\muT Py — o Lt]
L)y Y, \(L’/o‘@o
0o el g i O-Jf
B 1 .. \l:/ 4
77 4. i
L

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

=) ctg‘ u_')OJ"Lc:J CDVCtQ.LN

A 2 bt H&Mﬂ \ e
« 118 AD 5\1—0‘-‘31
2 bt dy et Ww ;fajé l”)@_%&@

g. ot S, R PR -t
w?\}\rw %o R ;\Nuwé’“{ b [N}Dl“;j
: ap
g C)Uj 1 5 (\9—>
Ly Loitiooloter
9\”!1“‘0‘00
&z
ool - e
Ly (oo eist
— o_))
Ly Bawmwiny Cocdle (%«ufm D e
\ £ 8 Vs, P"“i\;ilx
D F\\S.\)_I ._D{: > ¥ 01101
:D -‘I)L\ mlo c‘ %E \ O | d_.«"’.} \"—”"
1 l \ O
O asw F‘f’“ 1

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

UNIT -1I
COMBINATIONAL CIRCUITS
Part-B

1. Design a 4-Bit binary to gray code converter and implement it using logic gates.

(8)[N/D14]

* The logical circuit which converts binary code to equivalent gray code is known
as binary to gray code converter.

e The gray code is a non weighted code.

o The successive gray code differs in one bit position only that means it is a unit distance
code. It is also referred as cyclic code. It is not suitable for arithmetic operations. It is
the most popular of the unit distance codes. It is also a reflective code.

Decimal | 4 bit Binary Number 4 Bit Gray code

Number | A B C D Gy G, G3 Gy
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 ... 0 0 1 1 0 0 1 0
4 - U 1 0 0 0 1 1 0
5 0 1 0 1 0 1 1 1
6 0 1 1 0 0 1 0 1
¥ 0 1 1 1 0 1 0 0
8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 0
10 1 4| a0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0

That means. in 4 bit gray code. (4-1) or 3 bit code is reflected against the axis drawn

after 2*")" or 8" row.
The bits of 4 bit gray code are considered as G4G3G>G,. Now from conversion table,

Gy= Z m(8,9,10,11,12,13,14,15), Gg = Zm(4,5, 6,7,8,9,10,11)
Qy — Zm{i’} 3,4,5,10,11,12,13), G; =) m(1,2,5,6,9,10,13,14)

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

K-map Simplification

(o) oo
AB\ 00 01 11 10
00

. 1 . : 9 i 3 2

01" 4 76 01 i%1 o 14 U

" 112 113 1 15 114 LY P T

i __‘_I___f:_"_ 1 9 111‘__110 L ..1__&‘;1 9 111 1.11-1
Gy=A Gy =AB +AB = A@B

00 01 11 10 00 01 11 10
L | G! 11 ! 3‘"’“‘1'_]2 y: L i 3. 3 ? 2
01] |1 i 15 1 6 < 4 15 ulk 5
1 11; 11%, 161 14 X 1‘*3 - 114’
10 8 9 _1’1 110 ° : ﬂ A1 110

G,=BC + BC = B@C S =0

Logic Diagram:

A G,
T\ -
B /L// %

T\ o
C) /L./ 2

Logic Circuit for Binary to Gray Code Converter

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

2. Design a full subtractor and im

plement it using logic gates. (8)[N/D’14]
Full Subtractor..
¢ Full subtractor performs subtraction of two bits, one is minuend and other is
subtrahend.

e The input of a full subtractor cons
DIFFERENCE output (D) and B

* Full subtractor performs subtrac
subtrahend. In full subtractor

ists of three bits (A, B and Bin
ORROW (Bout)

tion of two bits, one is minuend and other is

) and two outputs are

v ‘1" is borrowed by the previous adjacent lower minuend
it.
Truth Table
Input Output

A B Bin D Bout

a J u] 4] 0

0 0 1 1 1

0 1 0 1 1

1] 1 1 0 1

1 0 0 1 0

1 Q 1 0 0

1 1 0 a 0

1 1 1 1 1

K-map Simplification

ForD

For B,
BB, BB,

AN 00 01 11 10 AN 00 01 11 10
of o [{1%] o [T} ol o {(GI[A 1)
L AR B S 1]ojo|{1)]o
D= KEB[""'IBBI""'AB EII‘\ "'ABBH.' BOLII: = KB"."'"IB*BBE"

Fig. 3.21 Maps for full-subtractor

Logic Diagram using logic gates

A > o
By, |
Y Bm

>
B _)_

Fig. 3.23 Implementation of full-subtractor

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

Logic Diagram using half subtractors

Firsl Half-Subtractor Second Half-Subtractor

I_ >— Difference

LA O O I T R SR N T SR R Ry

Fig. 3.24 Implementation of a full-subtractor with two half-subtractors and an OR gate

3. Design a BCD to Exces-3 code converter. (8) [A/M’15]

Truth table :

| EB{D Fxcess-3
AIBI|CIDIWIX|Y|Z

Q |0[O0jOj0jO]OfT1]]1
1]0]0J0[1]0(1]0(0
ZJOjupljujoifofl
3 Jojoli]1]o]1]1]0
4 10 Olojot| L1
5 10 0[1]1]0(0]0
6 [0f1f1]|O0[1T]0]O0]]1
7]0(1{1j1)1]/0]1]0
8040 [Abjw O] L A
9 (1|00]1]1[1]C]|0O
101010 X|X[X]|X
111|011 [X[|X|X[X
12(1[1]0)0|X[X|X]|X
1311101 [XX XX
g 1o x| x]x
IS{T{1T]T]TIX[X[X]|X

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

K-map Simplification

e

5 C
J*5\. 0 011 o AB 0 —

w M) o Al ~ W=A+BC+BD

01 1] 1Y 1 : o - T s s el |
A{ll XXX X A{n X x }B X=B'C +B'D +B.C'D'

11| X}iX 10 e
. Y=CD+C.D'
Z=D

Logic Diagram of BCD to Excess-3 code converter

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

4. Design a full adder using two half adders and an OR gate. (8)[A/M’15]

5. Design a full adder using only NOR gates. (6) [A/M’17]

e An adder is a digital circuit that performs addition of numbers.
e The half adder adds two binary digits called as augend and addend and produces two

outputs as sum and carry; XOR is applied to both inputs to produce sum and AND gate
is applied to both inputs to produce carry.

Full Adder

¢ The full adder adds 3 one bit numbers, where two can be referred to as operands and
one can be referred to as bit carried in. And produces 2-bit output, and these can be
referred to as output carry and sum.

* The difference between a half-adder and a full-adder is that the full-adder has three
inputs and two outputs, whereas half adder has only two inputs and two outputs.

e The first two inputs are A and B and the third input is an input carry as C-IN.

A —p

B ——»

Canry-ine—m —yp| ’

Adder

p Sum'S'

p Carry OUT

Full Adder Truth Table:

o INPUTS o OUTPUT
_A B CIN C-OUT E
0 0 0 0 0
0 0 1 0 1
e i 1 0 0 1
9 1 1 1 0
1 0 0 0 1
1 0 1 1 0
----- 1 1 0 1 0
1 1 1 1 1

visit : whgganeddoy<gamacanner

http://Easyengineering.net

. Visit
K-map Simplification

For Carry (C,,,)

BC,
00

0

01
0

kL

11
N

1

10
0

3

0 1

COUI = AB"'A Cin-er Cin

: www.Easyengineering.net

For Sum

BC;,

AN _00 Ot

1

0 J

LI 4

0

11

0 [:1;

. Sum= KECM*I-K&QHAE Eln+ABch
Fig. 3.15 Maps for full-adder

Logic Diagram using half adders

B [o_) ': 4 H? Adders

!

Carry-In R s

L“D—»W_}J

Carry-Qut

Sum

6. Design a 3 x 8 decoder and explain its operation as a minterm generator. (7) [A/M’17]

Truth table:

Inputs.

__ Outputs

=< |
o

o<
ac
-
o<

< |

ha X o
~<

s

olo|o|o|o|o|r oo

R ire=lolo|lo|lolx P
rlolrlolrle|lmr|lolx|n

O R SR S TR R -
rplmlololrir|leoleolx|w

rlo|lole|o|o|olole

o|l~|lo|lo|lo|o|e|oc|a
o|lo|r|o|o|o|e|o|e
olo|lo|r|lo|lo|ole|e

oleje|olr|le|o|e|o

o|lo|lo|lo|lo|r|lololo
\:: oloje|o|le|o|r|o|x

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Logic function:

Logic Diagram:

Visit : www.Easyengineering.net

Y, = AB'C’
Y, = AB'C
Y, = ABC
Y, = ABC

Y, =ABC’
Ys=AB'C

Ye._ = ABC’
Y, =ABC

EL{CTROMTCE 7

. | \
= 2
= 1
>
— oy
— Y4
= Ys
p i
[% Y7
g .- .
EN

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

7. Design a full subtractor and realize using logic gates. (8) [N/D’15]

8. Design a full subtractor and realize using logic gates. Also impl .
subtractors. (13) [N/D’16] B plement the same using half

Truth Table:
Inputs Outputs
A 8 By D Bout
] (v} 0 0
(1] 0 1 1 1
0 1 0 1 1
o 1 1 0 1
1 0 0 1 0
1 0] 0 0
1 1 0 0 0
1 1 1 1 1

Table 3.9 Truth table for fuil-subtractor

K-map simplification:

ForD For By
BBy BB;,
00 01 11 10 00 01 11 10
of o [{13] o |1} ol o {77 1)
1|".'1- HEREN K 1]ofo|{1ffo
D = ABB,,+ABB, +ABB, +ABB,, By = AB+AB+BB,,

Fig. 3.21 Maps for full-subtractor

Full subtractor using two half subtractors

First Half-Subtractor Second Half-Subtractor

P e R
v

Buut

Fig. 3.24 Implementation of a full-subtractor with two half-subtractors and an OR gate

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

Full subtractor using logic gates

A ¢ | e
El"_'.']—/ o
B]ﬂ D___-
A N ;
' E S >— BGHI
B |
J

Bin
Fig. 3.23 iImplementation of full-subtractor

9. Design a full adder using only NOR gates. (6) [A/M’17]

Cout

A
4 S
N

B ,__‘j,_

Cin

Full adder using NOR logic www.circuitstoday.com

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

Simpliny The logi cal Sxprosion Wiiay K-map
‘w\mPSOP anrd Pos Horm.(13) [N]p! H(R
F(A'@'c'ﬁ)zgmtorifslé’ujr)+d(8,l0,|\,IS’J

L —— ;
. % |
L i £ D b }.:13,\& 00} ol
e = © ©] oo| | ’
— —Q 1
o o0 o | o ol
4 <
7 O
l o] l 1) = .
R ¢ | [107L ;
O (O '
o | ® i - BE + B C
t o ! |lo D
Bz o ol
o (. o || el Fo |
] i 3 2 |
o ‘ ([|1 oil o, OﬁL .
4
{ o @l o |x ¥ @{-.-_ ol X | _92——~>(A+-®
(ol o| I |6 19} B C’q el P
1 @) (o | X \\/
CE-\-'D-)
(| © ‘ 1| x
Y- Caxr) (T+D)
\ \ O (o) 9
{ (O b 1o
A TR Y - BD+AC
\ { I o |o SOoP dJovm
| ‘ N L F?OSL;“; Yz(at®) (T+D)
\ bl |

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

c&"mp\ihj Trr Roolsan Junchon U*'”'\a kﬁmal’) Cu\cl
\tﬂ‘\P\em&"} LMA@ Of*\lj N aAND 8,:;_}%

FCA 0, C D)= smlo 8,0, 12,1s)+ 2 d (':%‘rf’.«m,w)
Madse e epentad ond Aoun- exsentiod
Pﬁm-e ‘m_f)_{wha.,@j LN,D-{SJ

A > | < D |y A&\c%l ov 1 |io
e © © < I _QQWJ_J }'('],X
o] a2__,. T——-—
D
O &) { ,7(-)(q’ . xv . £}
- © l ¥ —rTm ﬂo. 13 ’_I ’27-___‘
- ts -
B NN N B | I O S
/
(2Tl
O L) | o ; P
A E:AQ+A—£+&$
©] 5| &2 , .
E (t il o
Ac AD
,)
¢ 5 - ' lonsvesniilea) By min sl
Nen -~ ; N lmp carls
[o () | | O - B :
/ o | o | x
/ @, | |)
/ / o o ||
’ 1 | © [o
. l 1| 0| X

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

Loﬁig :Dt‘cﬁf@m
fF-AC+AD L ™D
A [20} c >

i D Ac
[|)
-

visit : whgganeddoy<gamacanner

http://Easyengineering.net

(8) [Afrt1S]

Visit : www.Easyengineering.net
Reduce The Fowiy ~undim Uning ko map

;‘CA,@,C,'L) < 1 M(O,z,B,B,q{ - |3,/5)

[Al el <[> |y
olo | o] 0|

O 0 © , , F

O 1% 1a] oo

0 3) :

! /10

© ' o 2 1

O | 0 []

o [| o |1

(0] / i /)

/ 0 Y, o | D
/ d %, e

) o / o | |

| | 8| ¢ L]
' o] o]0
Sl 1 ef 11D
L o
K) / | D

'%\d:k o\:L o | (\ (o

(o] - .
so| O (o O 1—2A+B+C
_ & ' = 5
= Y & < ~ 6
l [E (0] | oj——>A+84D
0 L Y e I
: oo,
0] o
(o : T?F A y "
BA+Ta

Fo (F+T <) (A2

— (BT D {ayer0)

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

* M\M Har Q{{“/\Q_HC_M ”

;(\D, obl’Y,S) 2 é(@' L, 2,4 7,90, u, 12) L{_My\a Je odlan.
@) [~

F— P
—%
M?dsi
— Y
\ — 8
btk
_Dgc‘m'e'f
y‘i
W
\,'l f—
- \frz.————““"_""u
Yl
le.r
J:ﬁ Ylg

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

Miimiza. Mo dunchion FC"‘*b'CrCU‘-ECo,q,t,,%,"f,fo,uz)
oo d - é:(&,|37>‘ QMA_{)M&/\S‘ A Obmclxov\ LW\A&
oy Nor qele) [a [p'u]

| >~ b e |4 |F X _
D 0 ' | ed o B
¢ i | ab @o(O\ I \Pﬂ'lo
0 % 0 [)() mﬁ‘j r , CX #_,,_)
Ak ' ,,,__’E_d
| .E | :
: ¢ [[|9 U ?\u X ‘i;q, i1
; 3 ' ¢
o [| ! :' |I | N
° ° l _ e J“‘f‘? =9 u \ w
0 | @) [a. } \L L.
o
() l . o
: ‘ \:(C&, b) C 4 c‘)—'-
o ! | I Joi — _—— .. -
. - ZCd+t bd +aC + a d
Bl 11
e | ol
ol 11 |o
[|) o |
| = F =
" ’) @) [_)i
I ! / 8] J
*.}_ ______ _,1 — Y A—
' | ! | |o|

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Y

-

visit : whgganeddoy<gamacanner

http://Easyengineering.net

Visit : www.Easyengineering.net

EE6301 - DIGITAL LOGIC CIRCUITS

UNIT =1l
SYNCHRONOUS SEQUENTIAL CIRCUITS
Part - &
1. Convert T fiip into D Flip flop [A/M-2015]
1. Truth Table for T Flip Flop 2. Excitation Table for D Flip Flop
Input | Outputs " Outputs | In
ﬁ: ﬁIr ﬁ'ﬂnﬂ u.-, ﬁmq EUt
0 D i}] E 1]
RS S]]
1 0 1 1 0 0
T | 1] 0 1| 1 1|
3. Conversion Table 4. K-map Simplification
n D Q
METESIL R
ol 1 1 1 [1 ol o9d| op-=1a+Ta
1(0 1 | 3 ==
T 5 1o 1 0 =T@Q.

2. Slate the rules for slate assignment [A/M-2015]

s Slates which have the same next state, for a given input, should be given adjacent assignments
» Slales which are the next slales of the same slate should be given adjacent assignments

+ To simplify the culput function, states which have the same output for a given input should be
given adjacent assignments.

3, Draw the truth table and state diagram of SR flip-flop [N/D-2013]

The 5R {lip-flop state table

s & |op \,gn\m el 10 § R Q State
a .
g K o O] 0 | 0 | PreviousState | Nochange
10| 1 o |lx |OIL 0] 1 0 Reset
1 1 X
The state diagram is Qiel}m 5§« 0NN : ’ i L
L8 i | ? Forbidden
X0
bl ;:.:m“&

4. Draw the state diagram of JK flip flop. [N/D-18]

Aol | icag

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

5. What is edge triggered flip flops? [N/D-2015]

An edge-triggered flip-flop changes states either at the positive edge (rising edge) or at the negative
edge (falling edge) of the clock pulse on the controf input.

Inputs Outputs
D c (] a Comments
0 1] 1 RESET
1 1 i 1] SET

If there is a HIGH on the D input when a clock pulse is applied, the flip-flop SETs and stores a 1.
If there is a LOW on the D input when a clock pulse is applied, the flip-fiop RESETs and stores a 0.

6. State any two differences between Moore and Mealy state machines.[M/J-2016] [N/D-16]

Mealy Moore
(1)| O/Ps depend on the present O/Ps depend only on the
state and present 1/Ps present state
(2}| The O/P changes asyn Since the O/Ps change
-chronously with the when the state changes,
emabling clock edge and the state change is
synchronous with the
enabling clock edge, O/Ps
change synchronously
with this clock edge
(3} A counter is not a Mealy A counter 15 a Moore
machine machine {o/ps = state bits) |

7 Glve the Characteristic equation and characteristic table of SR flip-flop.[M/J-2016]

Characteristic table of SR flip-flop:
5 R Qn | @nsy | State
2 : 22— No Change
I E : [,il g Reset
SRS
I } T Invald

Characteristic equation of SR flip-flop
Qns1 =5+ R'Qy

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

UNIT =1l
Part-B

1. Explan the operabion of & master slave JK flip flop (8) |AM-2015], [MAJ-2016]
* Master-siave flip flop is designed using two separate flip flaps.

» Out of these, one acts as the master and the other as a slave. Th of a master-s| K fl i
i , 8. The figure of a master-slave J-K flip flop is

"Master” | “Slave”
Flip-Nop I Flip-fiop
L]
Sl —_— G Ir J Q -0 0
Clok -1 L > Clk | > Clik
Resel I_ K Q : K @ od
|

Clic Clk
|

Boih the J-K fiip flops are connected in a series connection.

The output of the master J-K flip flop is fed to the input of the slave J-K flip fiop.

The output of the slave J-K fiip flop is given as a feedback to the input of the master J-K flip flop.

The clock pulse [Clk] is given to the master J-K fiip flop and it is sent through a NOT Gate and thus inverted
before passing it to the slave J-K flip flop.

Operation

= When Clk=1, the master J-K flip flop gets disabled. The Clk input of the master input will be the apposite of
the slave input. So the master flip flop cutput will be recognized by the slave flip flop only when the Clk value
becomes 0.

« When the clock pulse males a transition from 1 ta 0, the locked outputs of the master flip flop are fed through
to the inputs of the slave flip-flop making this flip flop edge or pulse-triggered.

B g EN g EEESEN vp
a | | IR d "ik‘~ \. “!’\5 | ‘:‘."»._

Figure 3 Timing disgram for mester-slive JE Rp-flop

» Thus, the circuit accepts the value in the input when the clock is HIGH, and passes the data to the output on
the falling-edge of the clock signal.

» This makes the Master-Slave J-K fiip flop a Synchronous device as it only passes data with the timing of the
clock signal,

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

. Design a 3-bit bidirectional shift register, (8) [A/M-2015]

The above diagram shows 3-bit Bi-directional Shift register, this type of register allows shifting of data
either fo the left side or fo the right side.

Itis implemented by using logic gate circuitry that enables the transfer of data from one stage to the next
stage to left or to the right, depending an the level of a control line,

The RIGHT/LEFT===--=RIGHT/LEFT_ is the control input signal which allows data shifting either
towards right or towards left. A high on this line enables the shifting of data towards right and a low
enables it fowards lefi.

When RIGHTLEFT--=--- RIGHT/LEFT_ signal is high, cut of the pair of each 2 AND gates the first
AND gate from each of the pair is enabled.

The state of the Q output of each Flip Flop is passed through the input of the following flip flop. When the
clock pulse arrives, the data are shifted one place to the right.

When RIGHT/LEFT====-- RIGHT/LEFT_ signal is low, out of the pair of each 2 AND gates the second
AND gate from each of the pair is enabled.

The state of the Q output of each Flip Flop is passed through the input of the preceding flip flog. When
the clock pulse arrives, the data are shifted one place to the left.

>

RIGHTAEFT

Soral data in
for right shun

T ————
-
P
=
- ——
-

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

3. Design a MOD-5 synchronous counter using JK. flip-flops (B) [AM-2015]

State Diagram.
State Diagram of Mod - § Counter
State Table:
PS5 NS Excitation Inputs
Jd Kea
_9e di Qo Q; lI:'11 Qo Jz KE Jy Ky n
0 0 0 0 1] 1 0 X 0 X 1 X
0 1] 1 0 1 0 0 X 1 X X 1
o | 1 0 0 1 1 0 * X 0 1 X
0 1 1 1 0 0 1 X X 1 x 1
1] [} 0 0] i} o 1 0 ¥ 0 ¥
T —'ITJF 1 X = X » 4 ~ X b x
1 1 1] X X X X x X X x X
1 1 1 X X X X X X X X X
K-map simplification B Y 8 S a
. G
aN q'm 6t n_ 10 W\ pg 01 M 10
o [1] olfx | x| x| %
"EIERIEIE ST
| (1iford, =0 2)forK; K;=1
q. Q.
N q'm on 11 10 SN pe 01 1 10
i} i W X o] X x 1
' i w | X X 1] x x Xx|| %
(3yford, J,=4, (yforK, K=g,

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

| a o
q 00 01 1 10 00 01 1 10
ofl 1 X X 1 O] x 1 1 X
| \ x | x | % gfx | % | &)X
II (5)forJ, J,=T, (6)forK, K,=1
Logic Diagram:
|
I
: 9 J 0 S —e—0C J
oLk < ok G CLK <
| @ ctrR K1 Heh @& CR K G ClR K

High

CLR

| Mod - 5 Synchronous Counter

4. Design a sequence detector to detect the sequence 101 using JK flip flop (B) [A/M-2015]
State Diagram

Figd. State diagram for 101 detector

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Stale table’

Present stats | Nextslale | Oulp
b o _|x=0|x=1] jx=
i] b
b c b
c a d
d ¢ b

Figd State table for above state duagram

Excitation table:
| & = i
luput | Present stute | Neat state | FiF inpets | %
x |'B A |B+1 Ax1lDg Jl?l i
0 |0 oO@m | 0 om|o O 0
o [0 1m 1 oy 1 o 0
7] I O 0 Q0@) o 0O L.
0 T I @l 1 O 0
i |0 om | o im|lo | S
i Jo 1@ | o im|lo 1] ©
:] ot | & -ttt g
Fig5. Excitation table
K-map simplification:
. For Dy, For D,
BA A
] 00 o L) ;\\ oo oo 11 160
o]l o| olo|lo|o| o I
il o 1 | 1] 1 i I
—Dy=x
Dy=x
Fip6. K-maps
Loglc Diagram:
Draw the logic diagram ;

J—oana
Fig? Circust diagram for implementation of 101 sequence detector

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

5. Realize T flip flop using JK flip flop. (4) [NID - 2015],

State Table
T [Qn|Quet |J|K
010 0 ([D]|X
0] 1 1 (X0
110 1T [1]|X
t{1] 0 [X]1
K-map simplification
Qs Qe
T
0 i & o ® 0
. : 2 1| [x i
I=1 K=T
Logic Diagram
T J Ql——
| JK
Flip Flop
K Q—

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

. Writa short notes on SIPO and draw the output waveform. (6) [N/D-16]

In Serial In Parallel Out (SIPO) shift registers, the data is stored into the register serially while it is
retrieved from it in parallel-fashion.

Figure 1 shows an n-bit synchronous SIPO shift register sensitive to positive edge of the clock pulse.
The data word which is to be stored (Data in) is fed serially at the input of the first flip-flop (D of FF).
Itis also seen that the inputs of all other flip-flops (except the first flip-flop FF1) are driven by the outputs
of the preceding ones say for example, the input of FF; is driven by the output of FF.

In this kind of shift reqister, the data stored within the register is obtained as a parallel-output data word
(Data out) at the individual output pins of the flip-flops (Q1 to Qx).

Figure1 n-bil Serial-in Parallel-Out Right-Shift Shift Register

In general, the register contents are cleared by applying high on the clear pins of all the flip-flops at the
initial stage. After this, the first bit, B of the input data word is fed at the D+ pin of FF.

This bit (B1) will enter into FFy, get stored and thereby appears at its output Q1 on the appearance of first
leading edge of the clock. Further at the second clock tick, the bit Bright-shifts and gets stored into

FF» while appearing at its output pin Qz while a new bit, Bzenters into FF;.

Similarly at each clock tick the data within the register moves towards right by a single bit while a new bit
of the input word enters into the register. Meanwhile one can exiract the bits stored within the register in
parallel-fashion at the individual flip-flop outputs.

Analyzing on the same grounds, one can note tha the n-bit input data word is obtained as an n-bit output
data word from the shift register at the rising edge of the n® clock pulse. This working of the shifi-register
an be summarized as in Table | and the comresponding wave forms are given by Figure 2.

Tabiel Data Movement in Right-Shift SIPO Sinft Register

Clock Cycle [Datain| @, | Q; Q,
1 B, Bix] 04 10
P B—p B, . J= .h“ b 1]
3 B,—b B ¥ 190
4 Eq._+ 54 e iT_
5 - i k1 = = n
(i} E ; o 0
n B,— B, Eﬁﬁ

Output of SIPO {right-shift) Shift Register

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

QOutput Waveform

ooty | g2 =] 14| 1%

DF Eq B: Ea. E.‘ EE Bﬂ. [E'n. A
Qs 0 B, B"r E-3 E4 5.5 e B,

! / Data-Word

Y T M N N " | n-bit Output

N N NG S, R A t
Q| 0o | o | 0| 0o | o | O 51)|

Figure2 Output Waveform of r+-bit Right-Shift SIPO Shift Register

Logic Diagram

4-bit Parallel Data Output

QA QE QC QD
s 3 n.i D Q i. D Q.imj
patain | FFA FFB FFC FFD
leik ek _leLk MLk
CLR CLR CLR CLR
Clear l l l
Clock | AL

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

7. Explain the realization of JK flip flop from T flip flop. (7) [N/D-16]

L. Truth Table for JK Flip Flop 2. Excitation Table for T Flip Flop
inputs | Outputs Outputs | Input
JK[Q, [Qpy | Ry e T
0| D] O 0 0 0 0
010] 1 1) 1 L
0(11]10 0 1 0 1
0] 1 1 0 1 1 0
11]0] 0 1
11 0] 1 1
11110 1
11111 o

3. Conversion Table 4. K-map Simplification
J | K | T
710 qu" un“ M= Do 01 11 10
0]0[1] 1 |0 o 09 oM 0?
0]1] 0 g |0 5 f 6
0[1[1] 0 [1 dEIKE a
110 0 1 1 o
1[0/ 1] 1 |0 T=130,+KQ,
1111 0 1 |1
1111 1 0 1
5. Circuit Design
L™

*‘1——/; f T Q
i ==] — CLK

(3]

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

EE8351 - DIGITAL LOGIC CIRCUITS
UNIT-IV
ASYNCHRONOUS SEQUENTIAL CIRCUITSAND PROGRAMMABLE LOGIC DEVICES
PART-A

What is deadlock condition? [N/D’14]
A condition resulting when one task is waiting to access a resource that another is holding, and
vice versa.

Draw the block diagram of PLA. [N/D’14]

programmable programmable
AND array OR array

Inputs ————— = +——= Quiputs

State the difference between static — 0 and static — 1 hazard.[A/M’15]

Static-1 Hazard: the output is currently 1 and after the inputs change, the output momentarily
changes

to 0 before settling on 1

Static-0 Hazard: the output is currently 0 and after the inputs change, the output momentarily
changes to 1 before settling on 0

What is a PROM? [A/M'15] , [N/D’15]
PROM- Programmable Read Only Memory is a device that contains Fixed AND and
Programmable
OR functions. IT contains fuses inact giving all 1's in the stored bits and blown fuses by
applying high voltage defining 0 states.

Compare pulsed mode and fundamental mode asynchronous circuit.[N/D’15]

S.No. Pulsed mode asynchronous circuit Fundamental mode asynchronous circuit

1. | Inputs are levels. Inputs are pulses.

Memory elements are either clocked flip -

2 flops or time delay elements.

Memory elements are clocked flip — flops

3. | More difficult to dsign. Easy to design.

What are the two types of asynchronous sequential circuits? [M/J'16]
The two types of asynchronous sequential circuits are:

a) Fundamental mode circuits

b) Pulse mode circuits

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

7. State the difference between PROM, PLA and PAL. [M/J'16], [A/M'17]

Types of PLD s AND array OR array
PROM Fixed Programmable
PLA Programmable Programmable
PAL Programmable Fixed

8. What is static hazard and dynamic hazard?[N/D’'16]

 Static Hazard — Output value the same
after input change

|

0-Hazard 1-Hazard

» Dynamic Hazard — Output value
different after input change

L

9. Define races in asynchronous sequential circuits.[N/D’16]
When 2 or more binary state variables change their value in response to a change in an input
variable, race condition occurs in an asynchronous sequential circuit. In case of unequal delays, a
race condition may cause the state variables to change in an unpredictable manner.

10. Whatis a flow table? Give example. [A/M’'17]
A state transition table with its internal state being symbolised with letters.

Examples:

X
¥ 0 1

XX

a|l @ | b 0 01 110
ol@of@.o0] 5,0
T ol f@0]@d@s)

b|la,0| a,0 1 0
c @ d ’ @ @

d a @

(a) Four states with (b) Two states with two
one input inputs and one output

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

PART -B

1. Explain the various types of hazards in sequential circuit design and the methods to eliminate them.
Give suitable examples. (16) [N/D’'14]
Hazards in any system are obviously an un-desirable effect caused by either a deficiency in the
system or external. Influences. In digital logic hazards are usually referred to in one of three ways:
a) Static Hazards
b) Dynamic Hazards
c) Function Hazards
These logic hazards are all subsets of the same problem: - When changes in the input variables do
not change the output due to some form of delay caused by logic elements (NOT, AND, OR gates
etc), this results in the logic not performing its function properly.

This is however a temporary problem, and the logic will finally come to the desired function. Despite
the logic arriving at the correct output, it is imeritive that hazards be eliminated as they can have an
effect on other systems. Imagine hazards like this in a piece of hospital equipment.
Static Hazards
Definition:- "When one input variable changes, the output changes momentarily when it shouldn't"
This particular type of hazard is usually due to a NOT gate within the logic. We can see the effects
of the delay in the circuit from the following flash animation.
The hazard can be dealt with in two ways:
1. Insert another (additional) delay to the circuit. This then eliminates the static hazard.
2. Eliminate the hazard by inserting more logic to counteract the effects (Note this makes
assumptions that the logic will fail)
o The first case is the most used of the two options. This is because it does not make
assumptions about the logic, instead the method adds redundancy to overcome the hazard.
e To solve the hazard we shall use our previous example and apply a theory that 'Huffman’
discovered.
e The insertion of a redundant loop can eliminate a static hazard.
In the next example, it will also be evident that there will not be a situation where a static '0' occurs.
A static '0' hazard is one which briefly goes to 1" when it should remain at '0". A static '1' hazard is
the reverse of this situation, i.e. the output should remain at '1' yet under some condition it briefly
changes state to '0' (something we shall see in the following example)..
Example of Static Hazards
The Static '1' Hazard.
Let us consider an imperfect circuit that suffers from a delay in the physical logic elements i.e. AND
gates etc.
The simple circuit performs the function:
f=X1.X2+X1'X3
and the logic diagram can be shown as follows:

At the starting diagram, it is clear that if no delays were to occur, then the circuit would function
normally. However since this is not a perfect circuit, and an error occurs when the input changes
from 111 to 011. i.e. When X1 changes state.

X1, X2
00 01 11 10

JENA
Nans

Hazard

X3

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

This Karnaugh Map shows the circuit. The two gates are shown by solid rings, and the hazard can
be seen under the dashed ring. The theory proved by Huffman tells us that by adding a redundant
loop 'X2X3' this will elimate the hazard. So the resulting logic is of the form shown in the next figure.

X1, X2
00 01 11 10

o L)
1 |G

Hazard Eliminated

So our original function is now: f =X1.X2 + X1'.X3 + X2.X3
It is observed that even with imperfect logic elements, this example will not show signs of hazards
when X1 changes state. This theory can be applied to any logic system.

Dynamic Hazards

e Definition:- "A dynamic hazard is the possibility of an output changing more than once as a
result of a single input change"

e Dynamic hazards often occur in larger logic circuits where there are different routes to the
output (from the input). If each route has a different delay, then it quickly becomes clear that
there is the potential for changing output values that differ from the required / expected output.
e.g. A logic circuit is meant to change output state from '1' to 0", but instead changes from '1' to
‘0" then 1" and finally rests at the correct value '0'. This is a dynamic hazard.

e Dynamic hazards take a more complex method to resolve. The below example shows how a
dynamic hazard can occur but now how to solve it.

Let us take the circuit above, and see the proper logic output with the logic values above

PR S

Let artificial delays be introduced in some of the elements. Marked D1, D2 and D3.
e Consider D1 < D2 <D3.
i.e. The delay in D1 is less than the delay in D2, and the delay in D3 is greater than the
delay in D2.

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Say that input B changes from 0 to 1. Working with one delay at a time the output can be
determined.

There could be a different output value for every different delay.

The NOT gate shown changes from 1 to 0. Remembering that D1 is the shortest of the
three delays, the AND gate shown will also change from 1 to 0.

Because the other delays (D2, D3) are longer than D1, and because the other gates have
no delay (or neglible delay), our output changes from 1 to 0. (The first effect of the hazard).
The next delay to occur is D2. So the OR gate shown implements the change (0 OR 1 =1).
Now the AND gate has only seen the change in one of its inputs due to the delay D3 being
longer than the other delays. So momentarily, both inputs are logic 1 which means the AND
gates output goes to logic 1 hence changing the output of the entire circuit (1 OR 0 = 1).

Loglc values at each stage

stan | ot [02 | b3
[output 1 0 1 0

0-1

The next delay to occur is D3. The OR gate reacts slower than D1 to the change in input,
but now the OR gate implements the change (0 OR 0 = 0). There is a knock on effect to the
AND gate (as 0 AND 1 = 0) and then again to the output of the entire circuit. The output
rests at 0.

This is the final stage as there are no more delays in the circuit and therefore no more
changes of state due to input B changing.

D3(1 OR0 =1).

The circuit finally rests at the correct logical value for an ideal circuit. However the output
has changed values twice before coming to the correct result on the third change. If this was
an ideal circuit then the output should have changed only once.

Logic values at cach stoge
Start | D1 | D2 | D2
[outper 1 0 1 0

=)o-’z-»o
140

150-1~0
il I

=0
2 \ 1-0
o1 /

0-1

0=1) D2

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

2. Describe with reasons the effect of races in asynchronous sequential circuit design. Explain its type
with illustrations. Show the method of race - free state assignments with examples. (16) [N/D’14]

e Arace condition or race hazard is the behaviour of an electronic, software, or
other system where the output is dependent on the sequence or timing of other uncontrollable
events.

e Arace condition may occur in a system of logic gates where inputs vary. If a given output
depends on the state of the inputs it may only be defined for steady-state signals. As the inputs
change state a small delay will occur before the output changes due to the physical nature of
the electronic system. The output may, for a brief period, change to an unwanted state before
settling back to the designed state. Certain systems can tolerate such glitches but if this output
functions as a clock signal for further systems that contain memory, for example, the system
can rapidly depart from its designed behaviour..

Types:
%+ Critical and non-critical forms

a) A critical race condition occurs when the order in which internal variables are changed
determines the eventual state that the state machine will end up in.

b) A non-critical race condition occurs when the order in which internal variables are changed does
not determine the eventual state that the state machine will end up in.

+ Static, dynamic, and essential forms

a) A static race condition occurs when a signal and its complement are combined together.

b) A dynamic race condition occurs when it results in multiple transitions when only one is intended.
They are due to interaction between gates. It can be eliminated by using no more than two levels
of gating.

c) An essential race condition occurs when an input has two transitions in less than the total
feedback propagation time. Sometimes they are cured using inductive delay line elements to
effectively increase the time duration of an input signal.

Design techniques such as Karnaugh maps encourage designers to recognize and eliminate race
conditions before they cause problems. Often logic redundancy can be added to eliminate some kinds
of races.

RACE -FREE STATE ASSIGNMENT
¢ Once a reduced flow table has been derived for an asynchronous sequential circuit, the next step
in the design is to assign binary variables to each stable state. This assignment results in the
transformation of the flow table into its equivalent transition table.
e The primary objective in choosing a proper binary state assignment is the prevention of critical
races. Critical races can be avoided by making a binary state assignment in such a way that only
one variable changes at any given time when a state transition occurs in the flow table.

Visit : www.Easyengineering.net

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Glitch
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Analog_delay_line
https://en.wikipedia.org/wiki/Karnaugh_map
https://en.wikipedia.org/wiki/Logic_redundancy
http://Easyengineering.net

Visit : www.Easyengineering.net

Three-Row Flow-Table Example

a=00 b =101

JE] ¢ | = [
i = 2R 6] -
|« [®lelE

(a) Flow table (b) Transition diagram

Fig: Three row flow table example

e To avoid critical races, we must find a binary state assignment such that only one binary variable
changes during each state transition.

¢ An attempt to find such an assignment is shown in the transition diagram.

o State a is assigned binary 00, and state c is assigned binary 11.

¢ This assignment will ca use a critical race during the transition from a to ¢ because there are two
changes in the binary state variables and the transition from a to ¢ may occur directly or pass
through b.

¢ Note that the transition from c to a also ca uses a race condition, but it is noncritical because the
transition does not pass through other states.

o A race-free assignment can be obtained if we add an extra row to the flow table. The use of a
fourth row does not increase the number of binary state variables, but it allows the formation of
cycles between two stable states.

e The transition table corresponding to the flow table with the indicated binary state assignment is
shown in Fig. The two dashes in row d represent unspecified states that can be considered don't-
care conditions. However, care must be taken not to assign 10 to these squares, in order to avoid
the possibility of an unwanted stable state being established in the fourth row.

Four-Row Flow-Table Example
A flow table with four rows requires a minimum of two state variables. Although a race-free assignment

is sometimes possible with only two binary state variables, in many cases the requirement of extra rows
to avoid critical races will dictate the use of three binary state variables

a =000 b =001
-}11)72 ‘L
7 3
¥3 00 01 11 10 e =100]'
0| a b c g
| f }
S —»%
1 e d f d =101 f=111 c=011
SN

Fig: Four-row flow-table example

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

e The following figure shows a state assignment map that is suitable for any four-row flow table.
States a, b, ¢ and d are the original states and e, f and g are extra states.
e The transition from a to d must be directed through the extra state e to produce a cycle so that

only one binary variable changes at a time.

e Similarly, the transition from ¢ to a is directed through g and the transition from d to ¢ goes
through f. By using the assignment given by the map, the four-row table can be expanded to a
seven-row table that is free of critical races.

000 =a

001 =5

011 =c¢

010=g

110 -

1i=f

0 ol 1110
b @ e
B 6]
@ ¢ | ®
I (R R
g | e = [
N OlOIE;

d

Fig: State assignment to modified flow table
Note that although the flow table has seven rows there are only four stable states. The uncircled states
in the three extra rows are there merely to provide a race-free transition between the stable states.

Multiple-Row Method

e The method for making race-free stale assignments by adding extra rows in the flow table is

referred to as the shared-row method.

¢ A second method called the multiple-row method is not as efficient, but is easier to apply.
¢ In multiple- row assignment each state in the original row table is replaced by two or more

combinations of state variables.

Visit : www.Easyengineering.net

http://Easyengineering.net

»i

Visit : www.Easyengineering.net

00 01 11 10

000 =a, | b, dy

Ml=ay | 5 @ ds
d‘

()
(&)
001 = b, @ a,
110 = b, @ d @ a;
011 = ¢, @ a | @
00 o1 4 1 10 Sl @ ~ b2 @

a, by <y d, 010 = d, < @ @ <

<2 dz uy b: 101 -dz <3 @ <z

(a) Binary assignment (b) Flow table
Fig: Multiple row assignment

Fig: Multiple row assignment

There are two binary state variables for each stable state, each variable being the logical
complement of the other. For example, the original state a is replaced with two equivalent states
a1=000and a2 = 111.

The output values, not shown here must be the same in a1 and a2. Note that a1 is adjacent to
b1, c2 and d1, and a2 is adjacent to ¢1, b2 and d2, and similarly each state is adjacent to three
states with different letter designations.

The expanded table is formed by replacing each row of the original table with two rows. In the
multiple-row assignment, the change from one stable state 10 another will always cause a
change of only one binary state variable.

Each stable stale has two binary assignments with exactly the same output.

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

3. Design an asynchronous sequential circuit that has two inputs X, and X; and one output Z. When
X, = 0, the output Z is 0.The first change in X, that occurs while X; is 1 will cause output Z to be
1. The output Z will remain 1 until X; returns to 0.(16) [A/M’15]

State diagram

Primitive flow table constructed from state diagram

Next stata ,Output Z
Present for X,X, Inputs
state
00 01 1 10
A @.0|8.-|-.-|c.-
B 7 ,o Sy B
c A-|-.-]€.-[©.0
D -.-| F .- @.1 C e
E -=|F.-|®.0]c.-
F A .- @.1 R -

Flow table with state assignment

Present state No'x:rs)t(:t;‘. f.’,:t.ﬂ:' 3

Fp Fy

1 10

o1
So—=0 0 |(5.0 | (D .of - | 8 .-
8 .-

S;—=0 1 | Sy .-

S;—=1 0 | .- <@%1 @.1 &'\~

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

Flow table converted into a transition table

Present state N';::;(‘;;; ﬁ:?;‘ *
Fa Fy 00 01 1 10
0 o |oo,0|00,0]10.-]01,-
0 1 00,- | 11,-|01,0]01.0
1 0 0,- (10,110, ,1| 11 -
1 1 - - 10, ~ - ,=]01, -
K-map simplification
+ »
For F, For Fy
XXy XXy
FoF, 00 01 11 10 FoFy 00 01 11 10
oo foll1)] o ool o |o] o7
orf o [{7}] o o o1 o |G Dl 1
n| x [K)] x| o nlx|o| xfi1
1] o i1 |{1}) 1 10]o o] of1
F: =F. XX, + FXX, +FX, Fi=FFX, + XX,
+FFX,
For Z
XXy
FoFiNL 00 01 11 10
ow|lo|o| x| x
o1l x| x| o] o
" P(X | X
10 -Lx 1| 1| %
Z=F;
Logic diagram
x? xI F! FI

1

Fye2
1 ,.l.
|

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

4. Show how to program the fusible links to get a 4 bit Gray code from the binary inputs using PLA and
PAL and compare the design requirements with PROM. (16) [N/D’15]
Gray code generator using PROM

32
b(g;o]t(0& 01 %t 10
R0 | oso) g S 121 .
06 00[00 00 P Tay T LM B L P B3] ol
0001t 0001 ;> ul bxl 13 B
00 10/00 1 1 E 1
091t 1,001 0 B{32] s
o1 00/l01 10 p(a:0]\ 00 01 11 10 2-—\\' ol2]
010 1/0 11 1 ol Ti]1 2]
011 0/0 1 0 14 s o1 111t » xXoR
61 v t|a1 o ol « '~D(2lb(11:_‘>
1000|1100 w0l "
i
100 11101 b1 i'“ L)
432) L B
et o % % 3 b{1.0] 01 11 10 XOR
ANt 31 1571 20O o
11 00/1 010
RIEIREE
90 ¥ 1505 3) %I = b{1] 2 0{0] |) = ol9]
11 10l100 1% L4 by !
+ 1111000 b 1) Gl B XOR

PROM based binary to gray code converter

Minterm number

Binary 0 1 2
ede 3 4 5 6 T 8 9 10 11 12 13 14 15

o

=3
e

=

¥ ey

=

code

JUOUUUUUUUUUU000

G;

VIV,

Figure 5.25 PROM realization of the binary-to-gray code converter.

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

PAL based binary to gray code converter

Programmed PAL: i,;‘ £
M M M
& L) o
+
T g
/
ey [=
L/ 4P
4 | 4
[\ Q
il = A
JH - B
X c
2
:m B 9
Ll T ABCD
Copyright to gaurav verma # j E.zb
TS e
e 4 product terms per each OR gate VVVV
\ NN Y X /
Binary to gray code converter Boolean expression are concluded as
Y3 == A
Y, = AB + AB
Y, =BC + BC
Yo=CD+CD

It is noted that 4 x 7 x 4 PLA is needed to implement gray code converter and same for PAL also.
Total number of AND OR gates links are

96 - PLA
56 — PAL
64 — PROM
DD CC BB AA
AND,
5 1 ™ 12 1 10 9
L/ AND,
20 13 | Y 24 23 22 21
AND, L/
32 25 | \ 35 35 34 35
L/ AND,
a4 37 m\ 48 47 46 45
AND; L/
i 8 M\ 60 59 58 57
L/ anpg
61 m 72 71 70 69
AND; L/
- 73 [\ 84 83 82 81
L/ AnD,
i \ 9 |95 94 93
81 L/

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

5. What are static — 0 and static — 1 hazard? Explain the removal of hazards using hazard covers in k-
map. (8) [M/J'16]
Static Hazards
A static hazard occurs when a single input variable change should cause no change in the output of
a combinational logic circuit, but a short glitch of the incorrect logic level occurs.
The problem occurs because real physical implementations of logic functions have finite propagation
times which are variable, and if two inputs to a gate should theoretically change simultaneously, one
will actually change before the other.
If more than one input variable changes "simultaneously" there is no way to guarantee that such
glitches will not occur.

Types of Static Hazards

Static — 1 hazard :- A static 1 hazard may occur in a two level sum of products (SOP)
implementation.

Static — 0 hazard :- A static 0 hazard may occur in a two level product of sums
(POS)implementation.

Example of Static Hazards

The Static '1' Hazard.

Let us consider an imperfect circuit that suffers from a delay in the physical logic elements i.e. AND
gates efc.

The simple circuit performs the function:

f=X1.X2 +X1'X3

and the logic diagram can be shown as follows:

At the starting diagram, it is clear that if no delays were to occur, then the circuit would function
normally. However since this is not a perfect circuit, and an error occurs when the input changes
from 111 to 011. i.e. When X1 changes state.

X1, X2
00 01 11 10

Nans

Hazard

This Karnaugh Map shows the circuit. The two gates are shown by solid rings, and the hazard can
be seen under the dashed ring. The theory proved by Huffman tells us that by adding a redundant
loop 'X2X3' this will elimate the hazard. So the resulting logic is of the form shown in the next figure.

X1, X2
00 01 11 10

o L
1aoe

Hazard Eliminated

So our original function is now: f =X1.X2 + X1'.X3 + X2.X3

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

It is observed that even with imperfect logic elements, this example will not show signs of hazards
when X1 changes state. This theory can be applied to any logic system.

6. Explain cycles and races in asynchronous sequential circuits. (8) [M/J’16]
Races in asynchronous sequential circuits

R/
L4

R/
L4

Race condition: [two or more binary state variables will change value when one input
variable changes [Cannot predict state sequence if unequal delay is encountered [
Non-critical race: [The final stable state does not depend on the change order of state
variables [Critical race: [The change order of state variables will result in different stable
states.

X

0

O,

11

11

10

G|1®|®

(a) Possible transitions:

00— 11
00— 01
00— 10

0 1

0 1 0 I

Yi)2 yiyz yiy2

@[] Te[@[r] Te[@]

01 11 01 11 01 @

11 @ 11 @ 11 01

10 @ 10 11 10 11

(b) Possible transitions: (a) Possible transitions: (b) Possible transitions:

00—~ 11 00— 11 00— 11—>01
00— 01—~11 00— 01—=11 00— 01
00— 10 00— 10—11 00— 10— 11> 01

Fig. 9-7 Examples of Critical Races

Cycles in asynchronous sequential circuits

DS

X/ K/ R/
LXK X4

Fig. 9-6 Examples of Noncritical Races

A cycle occurs when an asynchronous circuit makes a transition through a series of

unstable states.

When a state assignment is made so that it introduces cycles.

Care must be taken so that each cycle terminates on a stable state.

If a cycle does not contain a stable state, the circuit will go from one unstable state to
another, until the inputs are changed.

O

01

11

10

(a) State transition:
00—01—=11—-10

A) 0 1 yiyz

00 01
01 1

11 @
o @

(b) State transition:
00—01—-11

Fig: Examples of cycles

X

0 1
00 @ 01
01 11
11 10
10 o1

(c) Unstable

E01—>ll—>10-

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

EE8351 - DIGITAL LOGIC CIRCUITS
UNIT-V
VHDL
PART-A

. Write a VHDL code for 2 x 1 MUX. [N/D’14], [M/J'16], [AIM'17]
library ieee;

use ieee.std_logic_1164.all;

entity mux2_1is

port (a,b,sel:instd_logic; c: out std_logic);
end mux2_1;

architecture muxarch of mux2_1 is

begin

process (a,b,sel)

begin

if s=’0’ then c<=a;else s='1’ then c<=b; end if;
end process;

end muxarch;

State the advantage of package declaration over component declaration. [N/D’14]

Package declaration is used to declare components, types, constants, functions and so on.
Declared Packages will be shared by many design units.

Component declaration declares the name of the entity and interface of a component which is used
by the design unit. Declared Component will be used by the corresponding design unit.

. What is a package in VHDL?[A/M’15]

A VHDL package contains subprograms, constant definitions, and/or type definitions to be used
throughout one or more design units. Each package comprises a "declaration section", in which the
available (i.e. exportable) subprograms, constants, and types are declared, and a "package body",
in which the subprogram implementations are defined, along with any internally-used constants and
types.

. Write the behavioural modelling code for a D flip flop.[A/M15], [N/D’15], [N/D’16]
Library ieee;

use ieee.std_logic_1164.all;

entity dff is

port (D,clk,rst:instd_logic; Q: out std_logic);

end dff;

architecture behave of dff is

begin

process (rst,clk) Begin

if rst="0" then Q<='0’; elseclock’event and clk="1" then Q<=D;
end If;

end process;

end behave;

List out the operators present in VHDL.[N/D’15]
Logical operators, Arithmetic operators, Relational operators and shift operators.

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

6. Whatis data flow modelling in VHDL? Give its basic mechanism.[M/J'16]
A dataflow style architecture models the hardware in terms of the movement of data over
continuous time between combinational logic components such as adders, decoders and primitive
logic gates.
Basic Mechanism:
entity entity_name is
port();
architecture dataflow of entity_name is

éﬁd dataflow;

7. Write the VHDL code for a logic gate which gives high output only when both the inputs are high.
[N/D’16]
entity andgate is
port(A:in std_logic;
B:in std_logic;
Y: in std_logic);
end andgate

8. Give the syntax for package declaration and package body in VHDL.[A/M’17]
package package_name is
{package_declarative_item}
end [package_name];

package body package_name is
{package_declarative_item}
end [package_name];

9. What is the purpose of VHDL programming? Or what is the need for VHDL? [M/ J- 13]
Very high speed integrated circuit hardware description language. It is a language for describing a
hardware, which has to be readable for machines and humans at the same time & it structured and
comprehensible code, so that the source code can serve as a kind of specification document. Thus
it is used for studying digital logic circuits and testing its functions.

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

PART-B
Write VHDL coding for 4 x 1 multiplexer. (7)[N/D’16]
4: 1 MUX
Truth Table:
Input S1 S0 Ouptut
10 0 10
I1 1 I1
12 1 0 12
I3 1 1 I3
Logic Diagram:
lo .. ___,)-i
Iy » [;_j__::>—y
L ® = L
2 -
. o s [O
5 L
Program:

library IEEE;
use IEEE.STD LOGIC 1164.ALL:
entity mux4xl is
Port (din : in 3TD _LOGIC VECTOR (3 downto 0);
en : in STD_LOGIC;
sel: in std logic vector(l downto 0);
dout : out STD_LOGIC);
end mux4x1;
[Earchitecture mux4x1l arch of rux4xl is
signal iy:std logic:
[~begin
with sel select
iy<=din({C) when "00",
din(l) when "01",
din(2) when "10",
din{(?) when "11",
"' when others;
dout<=iy when en='1' else '(';
-end mux4xl_arch;

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

2. Write the VHDL code to realise a full adder using (16)[A/M’'15]

Write a VHDL program for full adder using structural modelling. (8) [N/D’15]

4. Explain in detail the concept of structural modelling in VHDL with an example of full adder. (13)
[N/D’16]

5. Explain the concept of behavioural modelling and structural modelling in VHDL. Take the example
of full adder design for both and write the coding.(8) [N/D’14]

w

Truth Table: Logic Diagram

A B C Sum Carry
0 0 0 0 0 » s
0 0 1 1 0 D— 0
0 1 0 1 0
0 1 1 0 1 —
1 0 0 1 0
1 0 1 0 1 Cin Cour 0
1 1 0 0 1 %
1 1 1 1 1 /

Program

a) Behavioural modelling

library IEEE;

use IEEE.STD_LOGIC_1164.ALL,;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity fab is
Port (a : in std_logic;
b :in std_logic;

¢ :instd_logic;

s : out std_logic;

cr: out std_logic);
end fab;

architecture Behavioral of fab is
begin
process(a,b,c)
begin
if(a="'0" and b="0" and c='0"then
s<='04
cr<='04
elsif(a="'0" and b="0" and c="1")then
s<="1"
cr<='04
elsif(a="'0" and b="1" and c='0")then
s<="1"
cr<="0"
elsif(a="'0"' and b="1" and c="1")then
s<='0},
cr<="1"
elsif(a="1" and b="0" and c='0")then
s<='1";
cr<="0";
elsif(a="1" and b="0" and c='1")then
s<='0},
cr<="1"

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

elsif(a="1" and b="1" and c='0")then
s<='04

cr<="1},

else

s<="1";

cr<="1"

end if;

end process;

end Behavioral;

b) Structural modelling
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use |IEEE.STD_LOGIC_UNSIGNED.ALL;

entity full_adder is

Port (a,b,cin :in STD_LOGIC;
sum,cout : out STD_LOGIC);
end full_adder;

architecture fa_str of full_adder is

component xor2

port(d1,d2:in std_logic;

dz:out std_logic);

end component;

component or2

port(n1,n2:std_logic;

z:out std_logic);

end component;

component and2

port(a1,a2:in std_logic;

u:out std_logic);

end component;

signal s1,s2,s3,s4,s5:std_logic;

begin
x1:xor2 port map
X2:xor2 port map
r1:and2 port map(a,b,s2);
r2:and2 port map(b,cin,s3);
r3:and2 port map(a,cin,s4);
o1:0r2 port map(s2,s3,s5);
02:0r2 port map(s4,s5,cout);
end fa_str;

a,b,s1);
s1,cin,sum);

P

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

6. Write a VHDL program for 1 to 4 Demux using dataflow modelling. (8) [N/D’15]

Truth Table: Logic Diagram:
Input | Select Lines | Output Lines X, Xq
i S1 8o D; D, D, Ds _3? %
I 0o 10 0 0 }Yn
I 01 01 00
I 10 00 10 }Yl
I 11 o001
}YI
}‘5’3
Enahle—
Program:
library IEEE;

use IEEE.std_logic_1164.all;

entity bejoy_1x4 is
port(s1,s2,data_in : in std_logic;
d1,d2,d3,d4 : out std_logic);
end bejoy_1x4;

architecture arc of bejoy_1x4 is

component dmux
port(sx1,sx2,d : in std_logic;
z1,z2 : out std_logic);

end component;

begin

dmux1 : dmux port map(s1,s2,data_in,d1,d2);
dmux2 : dmux port map(not s1,s2,data_in,d3,d4);
end arc;

library ieee;
use ieee.std_logic_1164.all;

entity dmux is
port(sx1,sx2,d :in std_logic;
z1,z2: out std_logic);

end dmux;

architecture arc of dmux is

begin

z1 <=d and (not sx1) and (not sx2);
z2 <=d and (not sx1) and sx2;

end arc;

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

7. Explain in detail the RTL design procedure. (16) [N/D’19]
1. Capture a HLSM
e Create a HLSM diagram to describe the system'’s intended behavior.
2. Convert to a Circuit
a) Create a datapath
e Create a datapath to carry out the data operations of the HLSM.
e Use components from a library
e Include registered outputs.
b) Connect the datapath to a controller
e Connect all control signals to the circuit
c) Derive the controller's FSM.
e Convert the HLSM to a FSM for the controller
= Replace data operations with setting and reading of control signals to and from
the datapath.
o Create a circuit for the controller from the FSM
Example:
Design a system to control the speed of the conveyor belt on a treadmill.
e Speedis a4 bit value that is controlled by two buttons
= Up button increases speed by one
= Down button decreases speed by one
= |f both are pushed, no change in speed occurs. Speed must initialize to zero upon
startup.

Inpuis: up (bit), down (bit) up
Quiputs: speed (4 bit reg)
Infemal Storage: nfa

Convert to a Circuit
1. Create a data path
e Create a data path to carry out the data operations of the HLSM.

e Use components from a library
¢ Include registered outputs.

Visit : www.Easyengineering.net

http://Easyengineering.net

2. Convert to a Circuit

e Connect the datapath to a controller

Visit : www.Easyengineering.net

e Connect all control signals to the circuit

trdmill_spg_cin
ik

clk

e Convert to a Circuit

D{3:0] Q[3:0 . 4 Speed
load Load
{5 Rst QN[7:0}—
clk
; >
D_Reg_PL_Ra_&dit
a{3:0} S[3:0
X Ince_Decr_4bit
dir ’
dir co|—
D[3:0] Q[3:0 Speed
load =t Joad o
rst) st Rst ON[7:0}—
" clk L
D_Reg_PL_Rsl_4bit
a[3.0] S[3:0
di ince_Decr_4bit
L dir cof—

o Derive the controller's FSM.
o Convert the HLSM to a FSM for the controller
o Replace data operations with setting and reading of control signals to and from the

datapath.

o Create a circuit for the controller from the FSM

2. Convert to a Circuit
4 Derive the controller's
FSM,

= Convertthe HLSMto a
FSM for the controller

signals 10 and from the
datapath.

» Create a circuit for tha
controier from the FSM

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

8. Explain the various operators supported by VHDL. (8) [M/J'16]
9. Write short notes on built — in operators used in VHDL programming. (6) [N/D’16]

Logical Operators

VHDL Operation Operand Type Result
Operator Type
not logical not boolean, bit[_vector], std_logic[_vector] |same type
and logical and | boolean, bit[_vector], std_logic[_vector] |same type
or logical or boolean, bit[_vector], std_logic[_vector] |same type
nand logical nand | boolean, bit[_vector], std_logic[_vector] |same type
nor logical nor boolean, bit[_vector], std_logic[_vector] |same type
xor logical xor boolean, bit[_vector], std_logic[_vector] |same type
xnor logical xnor | boolean, bit[vector], std_logic[vector] |same type
Examples:
carry <=aand b oraand corb and c;
zout <= (not a) and b;
Relational Operators
VHDL Operation Operand Type Result
Operator Left Right Type
= equality any type any type boolean
I= inequality any type any type boolean
< less than any scalar type any scalar type | boolean
<= less than or |any type escalar any scalar type | boolean
equal to
> greater than |any type escalar any scalar type | boolean
=> greater than
or equal to any type escalar any scalar type | boolean
Example:

data <= (a=0) and (b=1);

Arithmetic Operators

e The circuit used for an arithmetic operator will be entirely combinational logic

o Arithmetic operators are implemented in two’s complement

e The negation operator is implemented as a two’s complement negation. Two’s complement

negation is performed by subtracting the input from zero

e The add operator is usually implemented as a ripple-carry adder. The same circuit is used

for either signed or unsigned arithmetic.
e The subtractor operator is implemented as a ripple-borrow subtractor

Visit : www.Easyengineering.net

http://Easyengineering.net

Visit : www.Easyengineering.net

VHDL Mathematical Operators

VHDL Operator Operation Operand Type Result Type
Left Right
Miscellaneous
e exponential any integer integer same as left
abs absolute value |any numeric tpye any numeric type same numeric type
Arithmetic
* multiplication any numeric any numeric Same numeric
! division any numeric any numeric Same numeric
mod modulus any numeric any numeric Same numeric
rem remainder any numeric any numeric Same numeric
VHDL Operation Operand Type Result Type
Operator Left Right
Unary
+ identity any numeric any numeric same type
- negation any numeric any numeric same type
Adding
+ addition any numeric same type same type
- substraction any numeric same type same type
& concatenation |any array same array same array
any array the element same array
the element any array same array
the element the element any array
VHDL Shift Operators
VHDL Operation Operand Type Result Type
Operator Left Right
Shift
sl logical shift left one dimensional integer same as left
array of bit or std_logic
srl logical shift right one dimensional integer same as left
array of bit or std_logic
sla arithmetic shift left |one dimensional integer same as left
array of bit or std_logic
sra anthmetic shift right |one dimensional integer same as left
array of bit or std_logic
rol logical rotate left one dimensional integer same as left
array of bit or std_logic
ror logical rotate right |one dimensional integer same as left
array of bit or std_logic '

Visit : www.Easyengineering.net

http://Easyengineering.net

